	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 7 Students will build on KS2 learning to further develop their understanding of	Cells Students will study the key features and functions of plants and animal cells. They will develop understanding of how cells are adapted for their function. They will understand structural differences between unicellular and multicellular organisms and how substances can be transported by diffusion. Particles Students further their understanding of the properties of materials, focusing on the different states of matter in terms of the particle model. Students learn about changes in state of matter and will explore how to represent this with diagrams. Students	Interdependence Students will be able to classify animals based on their physical characteristics and understand how changes in the environment can impact food chains / webs and the abundance of organisms. Movement Students will explore the key features and functions of the skeleton, identify key parts of joints, and understand how muscles and joints work together to allow movement of the body. Atoms, Elements, Compounds Students further their understanding of matter and materials by learning about atoms, elements and compounds. Students	Gravity Students develop their understanding of gravity as a force including the difference between mass and weight, how gravity varies across the solar system, and how to draw a force diagram. Energy transfers Students will be introduced to the law of conservation of energy using an energy model where energy is transferred from one store at the start to another at the end.	Reproduction Students will build on learning from KS2 of the different ways in which plants can disperse their seeds, the key structures of the plant reproductive system and the process of pollination. Students will build on their knowledge of human reproduction. They will learn the differences between sexual and asexual reproduction, identify the key structures and processes of the male and female reproductive system, (including menstruation), before exploring the process of fertilisation. Here, students will be encouraged to make links with the PSHE curriculum on contraception and fertility.	Earth Structure Students will extend their knowledge of rocks and rock formation to explain how the rock layers inside the Earth have formed. Students will develop their scientific communication skills to represent the information in a comprehensive diagram. Speed Students will be introduced to the idea that forces are needed to cause objects to stop, start, change speed or direction. Students develop their maths skills using the speed equation and introduction of standard units in science e.g. time is measured in seconds.	Students start the second summer term with revision for their end of year assessments. This will involve revisiting key concepts, consolidating learning, making further links between units and practicing the application of skills and knowledge. After their end of year assessment and reteach period, students will embark on teacher-led projects that enhance their practical and investigative skills as young scientists.

	will have the opportunity to investigate changes of state, which may introduce them to variables and investigative techniques for the first time. Forces Students explore how forces interact with objects to change their speed, shape or direction and represent these as force diagrams. They will investigate friction and measure forces in stretching and squashing.	are introduced to chemical symbols and formulae.		Mixtures Students build on their knowledge of the states of matter to describe materials as pure and impure. In this topic, they will learn what makes a substance pure, what makes a mixture and simple methods that can be used to separate mixtures.	Electrical Circuits: Current and Potential Difference Students will build upon prior knowledge to build and draw circuits with a range of symbols. They will develop an understanding of what electric current is, how to measure it and what affects the current in a circuit. They will also understand the term 'potential difference', how it is measured and what affects the potential difference in a circuit.	
Year 8	Breathing and	Respiration and	Acids and Alkali	Drugs	Variation and	Earth Structure
	Digestion	Photosynthesis	Students will further	Students will be able to	Inheritance	Students will extend
	Students will	<i>Students will develop</i>	their understanding of	understand the term	Students will discuss	their knowledge of
	understand the parts	<i>understanding of the</i>	acids and alkalis to	"drug" and classify	variation within and	rocks and rock
	of the breathing	<i>importance of</i>	investigate	drugs in different ways,	between species, as	formation to explain
	system and how they	<i>respiration in living</i>	neutralisation	including their legal	well as linking their	how the rock layers

oraanisms. Students

will be able to describe

the differences

between aerobic and

anaerobic respiration

and how respiration

links to fermentation

and its uses in the food

and drinks industry.

Students will further

develop knowledge of

how plants survive and

the key concepts of

photosynthesis. They

will be able to name,

label and describe the

functions of tissues

within a leaf and their

role in photosynthesis,

play a role during the processes of inhaling and exhaling. Students will describe how gas is exchanged in the lungs, the effect of exercise on breathing and how smoking can impact gas exchange. Students will also be able to describe the function of kev structures of the digestive system and how they facilitate the digestion of food. Students will understand the *importance of a* healthy diet, the uses of nutrients found in food and consequences of poor diet. They will also understand how enzymes play a role in digestion. **Periodic Table and**

developing practical skills while learning how to test a leaf for the presence of starch. **Electrical Circuits:** Resistance Students will build upon knowledge of electrical circuits, **Metals/Non-Metals** current and potential Students will further difference. They will their knowledge of link this knowledge to a matter by sorting

reactions when an acid reacts with an alkali. They will be able to describe properties of acids and alkalis including their pH, give examples of each and safety precautions when handling them.

Earth Resources Students will relate their understanding of recycling to the limited nature of resources on Earth. They will learn about the different ways metals are found and the best methods to extract them. Students will be introduced to reactivity and electrolysis. status and their effects on the body. With strong links to PSHE, students will learn why people choose to take recreational drugs and the effects these can have on their physical and mental wellbeing.

Pressure

Students build upon their mathematical knowledge to calculate and explore the relationships between volume, area and pressure. They will look at how pressure changes with depth in a liquid and with height in air. ideas of inheritance to the reproduction topic. Students will understand structures within the genome and the role of genes during inheritance. Students will be able to describe how variation occurs in a population and how this leads to differences in characteristics. They will also develop their skills of presenting scientific data.

Waves: Light and Sound

Students will learn about wave properties and relate them to sound and light. Students will have some knowledge of sound and light from KS2, therefore the introduction of scientific vocabulary will be used to help them make more detailed links between the transfers of energy, inside the Earth have formed. Students will develop their scientific communication skills to represent the information in a comprehensive diagram.

	elements using	new concept:			waves and how we	
	chemical data and	resistance. Students			hear/see things.	
	linking this to their	will learn about the			Students will be able to	
	position in the	relationships between			state the similarities	
	periodic table.	each concept and apply			and differences	
	Students learn about	their knowledge using			between light and	
	patterns in reactivity	equations to calculate			sound waves. They will	
	and the properties	values for each.			study and draw ray	
	and uses of metals	Students will have the			diagrams to explain	
	and non-metals.	opportunity to explore			what happens when	
	Students will learn	each concept with			light hits different	
	how reactions with	practical			surfaces and learn how	
	oxygen and acids can	investigations.			lenses work, such as in	
	help determine the				the eye.	
	reactivity of a metal,					
	applying this to					
	explain displacement					
	reactions.					
Year 9	Evolution	Chemical Energy	Human Interaction	Chemical Changes	Cell Structure and	Cell Division
	Students will further	Students will build on	Students will use their	Students will look at	Transport	Students continue t
	develop	their understanding of	knowledge of variation,	combustion and	Students revisit cells	explore how cells ar
	understanding of	chemical reactions to	interdependence,	thermal decomposition	and build upon their	the building blocks
	variation and how	determine whether	respiration and	reactions to deepen	fundamental KS3	life. Students will
	this can give an	energy is required or	photosynthesis in this	their understanding of	knowledge as they	understand why cel
	organism a survival	released when a	unit. They will develop	chemical and physical	enter their GCSE	divide and use thei
	advantage to drive	reaction takes place.	an understanding of	changes. Students will	biology studies. Here,	knowledge of the ce
	natural selection.	They will be able link	the importance of	be introduced to	GCSE-level vocabulary	cycle to solve relate
	They will understand	this to whether bonds	sustainability to help	conservation of mass	will be explored and	problems, such as ho
	the importance of	are broken or being	pupils make	during a reaction,	students will classify	a tumour forms or ho
	biodiversity and	formed and will be able	responsible lifestyle	which will form the	cells in more scientific	long it may take a
		to use the keywords	choices. Pupils will go	foundational	ways, for example,	wound to heal.

exothermic.

endothermic and

factors that may affect it.

Work

Students will be able to explain that work is done and energy is transferred when a force moves an object. They will investigate how simple machines such as levers and pulleys make work easier. The skills developed here will form the fundamental knowledge required to understand work done at GCSE level.

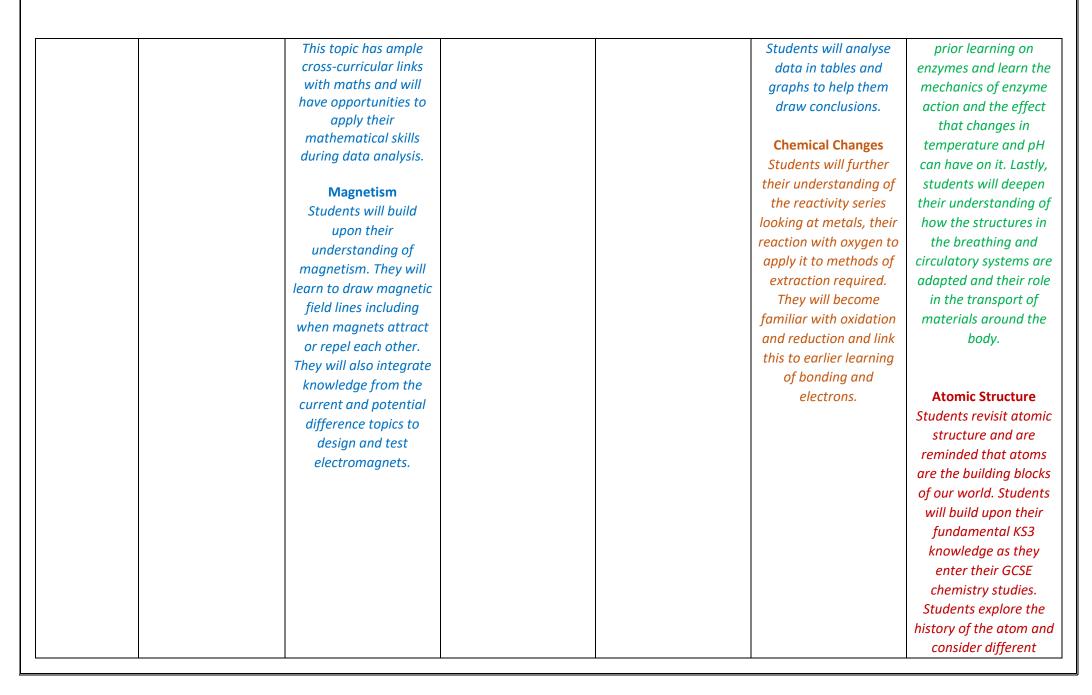
catalysts. Climate Students will be introduced to the composition of Earth's atmosphere, the carbon cycle and the effect of human activity on both the carbon cycle and the climate. This feeds into the biology topic

the biology topic Human Interaction, which is taught in Spring 1.

Heating and cooling

Students will further their understanding of energy and be able to explain that the thermal energy depends on the material, mass and temperature of an object. They will learn about different methods of heating and that energy transfers from hotter objects to cooler ones. on to learn more about conservation and relationships in ecosystems, which will be further developed at GCSE level.

Space & Universe Students will further their understanding of gravity and how it connects all things within the universe as well as the structure of the solar system, why we are held in orbit and have seasons and night and day. knowledge required for GCSE quantitative chemistry, e.g., atom economy.


Conservation and Dissipation of Energy Students revisit energy and build upon their fundamental KS3 knowledge as they enter their GCSE physics studies. Students will make connections between energy stores, energy transfers and efficiency. Students will apply mathematical skills to real-life examples of energy transfers and understand how everyday products work in terms of energy.

eukaryotic and prokaryotic. Students will develop microscope techniques and apply mathematical skills to calculate magnification. Students will also explore the different ways in which substances are transported into/out of cells and investigate diffusion and osmosis using practical techniques.

Energy Resources Students will discover the ways we source energy in real-life. Students will be able to classify resources into renewable/nonrenewable and evaluate the use of each. Students will be able to explain how each type of renewable energy is used to benefit humans. Students will be able to fully explain the functions of specialised cells and the functions and uses of stem cells in real-life. Students will evaluate the use of stem cells in medicine.

Organisation and the Digestive System Students will relate their knowledge of organisation to the digestive system. Students will apply their KS3 knowledge of balanced diets and the

structures and functions of the digestive system enhance their understanding of digestion. Students be able to describe and carry out food tests using chemical reagents and interpret the results to determine the composition of foods. Students will recap

						scientific theories, which will lead them to be able to explain why theories can change over time. Students will use their knowledge of compounds and mixtures to fully explain separating techniques.
	Autumn 1	KS4 Corr Autumn 2	nbined Science (T Spring 1	Spring 2	Summer 1	Summer 2
Year 10 (Trilogy)	Respiration Students will build on prior learning to understand the fundamentals of both aerobic and anaerobic respiration. They will explore graphical data to learn how the body's response to exercise facilitates an increase in the rate of respiration and the uses of the energy released from	Non- Communicable Disease Students will develop understanding of correlation and cause by building on their KS3 knowledge of drugs. Students will discuss how drugs and other lifestyle factors like diet and exposure to radiation can impact on health and increase the risk of non- communicable diseases. They will understand the development of cancer	Preventing and Treating Disease Pupils explore how vaccination works and how vaccines are used to control the spread of a specific pathogen. Pupils gain an appreciation of the processes involved in drug discovery and development and will be able to explain the stages in this process. Finally, students will be able to explain how	Reproduction Students will apply their knowledge of the cell cycle and mitosis to a new type of cell division: meiosis. They will Students will explore cellular reproduction in the formation of gametes and understand why the two processes differ. Students will be expected to use diagrams to support their explanations of meiosis and mitosis. Students will	Adaptations, Interdependence and Competition Students look at the factors that can affect the distribution of organisms and adaptations to help them survive in an ecosystem. They will describe methods to measure the distribution of organisms and link their findings to adaptations of plants and animals.	Students will recall the structures involved in a reflex arc and how nerves communicate at a synapse. Students will further develop practical skills while investigating reaction time.
				-	animals. Rates and Equilibrium	Motion Students will integ

		1			Ţ
introduced to		will be able to	these to cellular	will use this to explain	knowledge to explain
metabolic reacti		extrapolate information	reproduction.	rate of reaction. Students	
and will be able		from data surrounding		will investigate the	and predictable
describe wha	t viral, fungal, bacterial and	vaccination.	Photosynthesis	factors that affect rate of	ways when forces are
"metabolism" me	ans. a protist disease		Students review and	reaction through various	exerted on them.
	considering the methods	Energy Changes	extend their	experimental techniques,	Students will also will
	of transfer, symptoms and	Students will further	understanding	and will apply their graph	learn real world
Periodic Table	treatments across a range	develop their	of photosynthesis, leaf	drawing skills to	applications of force and
Students will exp	and of human examples.	understanding of	structure and the	represent data collected.	motion by determining
their understandi	ng of Students will explore why	exothermic and	transport of glucose and	Students will also explore	braking and stopping
the periodic table	, its pathogens make us ill, the	endothermic reactions	water through the plant	the term "reversible	distances of vehicles.
historical develop	ment immune system's response	including representing	between the soil, air,	reaction" and, in some	
and arrangement.	to intection and how we	them graphically,	roots, and leaves. They	cases, factors affecting	
will be able to exp	can prevent intection	explaining them in terms	will explore how factors	equilibrium.	
		of particle collisions and	can affect the rate of		
the difference	Chemical Calculations	giving examples of	photosynthesis, focusing	Crude Oil and Fuels	
between metals	Students will upply their	each. Higher	on the effect of	Students will be	
non-metals as we	understanding of	tier students will be able	light intensity on the rate	introduced to the	
identifying the		57	of photosynthesis for a	composition of crude oils,	
properties of grou	- · · · ·	changes of reactions as	practical investigation.	methods of separating	
group 1, group		bonds are broken and	Lastly, they will be able to	into fractions and	
elements as wel		-	explain how glucose is	properties of	
transition metals			used by the plant. Some	hydrocarbons. Students	
be able to comp	are in an equation. Students	Electricity in the Home	pupils will be able to link	will learn about the	
them to group	1 should be able to explain	Students will build on	photosynthesis to cost-	different structures and	
elements.	why reactions producing	their understanding of	effective crop growth.	applications of alkanes	
	gases appear to lose mass			and alkenes including	
Chemical Chang		by learning about	Radioactivity	methods of cracking to	
Students will stu			Students will learn about	produce alkenes.	
reactions of met	als measurements.	UK to understand the	the development of		
with acid to furt	her F L	differences between	scientific models	Chemical Analysis	
their understandi	ng of	direct and alternating	and theories with	Students will develop	
how salts are for	mod	· ·	the development of our	their understanding of	
	understanding of what	understand energy	understanding of the	pure substances, mixtures	

and named including a	electrolysis is and its uses	transfers and wiring in	atom, the subatomic	and chromatography	
and named including a			particles and how changes	and chromatography through a mixture of	
· · ·	including investigating the	· · · · · ·		theory and	
investigation. In	electrolysis of aqueous solutions. Students will be	well as the significance	in the nucleus of an atom	-	
addition, pupils will	able to use their practical	of power ratings and	causes radioactivity. Stude nts will learn about the		
also be made aware of	-	determine the		gation to separate and	
how we can use	knowledge and mathematical skills to		different types of	differentiate between coloured substances. They	
titration as a practical	predict observations at	appropriate fuse.	radioactivity through alpha, beta and gamma	will be able to describe	
method but will not be	electrodes and, in some		radiation, and	how to test for hydrogen,	
required to conduct	cases, produce half		explore their uses and the		
this practical	equations to represent the		dangers. Students will be	dioxide and chlorine.	
themselves.	reactions to represent the		able to represent		
	electrodes.		radioactive decay using	Waves	
Structure and Bonding	EIELLI DUES.		half equations. Students	Students will explore the	
Students will be	Electrical Circuits		will be able to compare	properties of longitudinal	
introduced to the	Students will build upon		irradiation and	and transverse waves.	
fundamental concepts	knowledge of electrical		contamination and give	They will apply equations	
of how atoms join to			examples of each.	to calculate the period,	
form different	circuits, current, resistance			speed, frequency, and	
compounds by	and potential difference,		Forces in Balance	length of a wave as well	
covalent, ionic and	learning about the		Students will further	as how to measure the	
metallic bonding. They	relationships between		develop their	speed of waves in air,	
will be able to identify,	them, equations to		understanding of forces as		
describe and draw	calculate them, and		scalars and vectors,	solid. Students will	
diagrams to represent	extending to static		looking at how forces	investigate wave	
each type of bond.	charges and electric fields.		affect a range of objects	measurements using a	
They will extend their	Students will investigate		including more complex	ripple tank and be able to	
knowledge linking	how different components		calculations of work done	write a method for this.	
	and arrangements of		and applying Newton's		
bonding and structure	circuits affect the				
to properties such as	resistance.		Laws to explain what we		
melting and boiling			observe when forces are		
points of substances	Particles in Matter		at work. Students will		
including ionic	Students will further their		apply their mathematical		

	molecules, polymers, giant covalent structures, metals and alloys. Energy Transfer by Heating Students will extend their knowledge of conduction, convection and radiation to explain energy transfers by heating and calculate the energy involved using a range of equations. They continue to develop their working scientifically skills through practical investigations of	understanding of particles, how the state of a material affects its density. Students will explain the energy of particles in matter and be able to identify factors that affect the energy required to change states. Students will calculate the energy involved in state changes. This will extend to challenge pupils to consider pressure in gases: how to increase it and how to calculate it.		skills to calculate resultant forces and, in some cases, resolve vectors.		
Year 11	investigations of conduction and insulation. Hormonal Coordination	Genetics and Evolution Having developed a	Biodiversity and Ecosystems	Students begin tailored revision plans, produced	Revision/GCSE's.	GCSE's.
(Trilogy)	Students will understand what hormones are and how bodily responses are controlled by feedback mechanisms.	deeper understanding of genetic inheritance and evolution from previous topics, students will explore further evidence to support the theory of	Students will build on prior learning of ecosystems and feeding relationships. Looking at the factors that can affect the distribution of	and delivered by their class teachers, for their final GCSE exams.		

Specifically deepening	evolution. Students will	organisms and		
their understanding of	make links between	adaptations to help		
changes at puberty and	evolution and the uprise of	them survive in an		
how hormones control	antibiotic resistant	ecosystem. Students are		
the menstrual cycle.	bacteria, as well as	required to describe two		
They explore the role of	relating this to real-life	separate methods of		
the pancreas in	complications. Students	practical techniques.		
controlling blood	will learn how organisms	They will describe		
glucose, applying this	are classified and be able			
to understand causes/	to explain the importance	distribution of organisms		
treatments of	of classification.	before learning how		
diabetes. Students may		materials like carbon		
also learn how	Earth's Atmosphere	and water are recycled.		
glucagon and insulin	Students will learn how			
interact to control	the Earth's atmosphere	Electromagnetism		
blood glucose levels.	was formed, what it is	Students will revisit their		
	made of, and how it has	KS3 knowledge of		
Variation and	changed since the	magnets and their KS4		
Evolution	formation of the Earth.	knowledge of forces to		
Students will develop	Students will broaden	extend their		
their understanding of	their understanding of	understanding. Students		
variation from KS3 and	carbon dioxide and	will explain how a		
make scientific links		magnetic field is		
between variation and	methane as greenhouse	produced when a current		
evolution. Students will	gases, including human	passes through a wire.		
explore Darwin's	impacts, global climate	Some students will learn		
theory of evolution by	change and methods of	about the motor effect		
natural selection and	reducing carbon	and how to use		
	footprints. They will make	Fleming's left hand rule		
support this theory.	cross-curricular links	in relation to		
Students will also learn	between physics and	this. Students' maths		
about selective	biology, as well as	skills will be applied		
breeding techniques	geography. Students will	throughout this topic,		
and use their				

_	be asked to analyse data	including rearranging	l
the use of GM crops in	about the changing	equations.	l
industry.	atmosphere and draw		l
	conclusions from it.	Electromagnetic Waves	I
Force and Motion	-	Students will develop	l
Students will apply		their understanding from	I
	Students will develop their	KS3 light to look at the	I
	foundational knowledge	electromagnetic	I
	and understanding of the		l
Students will draw and l	imited resources available	and uses of its	I
interpret graphs to	on Earth from KS3. They	component	I
calculate displacement,	will be introduced to life	parts. Students will be	I
velocity and time using	cycle assessments to	able to describe the uses	I
related and sometimes	determine the	of the EM spectrum in	
multi-step equations.	environmental impact of	real life and the dangers	
	products as well as	of certain parts of it.	1
	methods of reducing	Students will apply their	1
	waste. Some students will	maths skills through use	1
(also evaluate the methods	of standard form to	
	of extracting metals.	represent very large and	
		very small numbers.	
		Some students will learn	
		how different	
		wavelengths refract	
		differently, how to draw	
		wave front diagrams and	
		how radio waves and	
		alternating currents are	
		linked.	l

	KS4 Sepai	rate Science (Trip	ole) Pathway		
Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2

Year 10	Respiration	Communicable Disease	Preventing and Treating	-	Photosynthesis	Human Nervous System
(Triple)		Students will learn about		Students will apply their	Students review and	Students will gain an
(inpic)	learning to understand the	viral, fungal, bacterial	Pupils explore how	knowledge of the cell	extend their	understanding of why
	fundamentals of both aerobic	and a protist disease	vaccination works and	cycle and mitosis to a	understanding	homeostasis and reflex
	and anaerobic respiration.	considering transfer,	how vaccines are used	new type of cell division:	of photosynthesis, leaf	arcs are so important.
	They will explore graphical	symptoms and	to control the spread of	meiosis. They will	structure and the	Students will recall the
	data to learn how the body's	treatments across a	a specific pathogen.	Students will explore	transport of glucose and	structures involved in a
	response to exercise	range of human and	Pupils gain an	cellular reproduction in	water through the plant	reflex arc and how nerves
	facilitates an increase in the	plant examples with	appreciation of the	the formation of	between the soil, air,	communicate at a
	rate of respiration and the	greater emphasis on	processes involved	gametes and	roots, and leaves. They	synapse.
	uses of the energy released	identification and	in drug discovery and	understand why the two	will explore how factors	Students will further
	from respiration in both	methods of protect in	development and will be	processes differ.	can affect the rate of	develop practical skills
	animals and plants. Students	plants for triple students.	able to explain the	Students will be	photosynthesis, focusing	while investigating
	are introduced to metabolic	Students will explore the	stages in this process.	expected to use	on the effect of	reaction time. Students
	reactions and will be able to	immune system's	Students will be able to	diagrams to support	light intensity on the	will be able to recall the
	describe what "metabolism"	response to infection and	explain how plants are	their explanations of	rate of photosynthesis	structures of the brain
	means.	how vaccination	useful in medicine, and	meiosis and mitosis.	for a practical	and the eye. Students wil
		programmes are used to	the treatments available	Students will revisit	investigation. Lastly,	relate their
	Non-Communicable Disease	control the spread of a	for plant diseases.	fundamental key words	they will be able to	understanding of these
	Students will develop	specific pathogen.	Students will explore the	from their KS3 genetics	explain how glucose is	organs, and of
	understanding of correlation		production and uses of	learning and link these	used by the plant. Some	technology, to diagnosing
	and cause by building on	Chemical Calculations	monoclonal	to cellular reproduction.	pupils will be able to link	and treating common
	their KS3 knowledge of	Students will review the	antibodies in medicine.		photosynthesis to cost-	problems associated with
	drugs. Students will	theory of conservation of	Students deepen their	Crude Oil and Fuels	effective crop growth.	them.
	discuss how drugs and other	mass, practice balancing	understanding of plant	Students will be		
	lifestyle factors like diet and	equations and apply	disease, mineral	introduced to the	Adaptations,	Earth's Atmosphere
	exposure to radiation can	their maths skills to	deficiencies and how to	composition of crude	Interdependence and	Students will learn how
	impact on health and	calculate relative	detect and treat plant	oils, methods of	Competition	the Earth's atmosphere
	increase the risk of non-	formula mass.	disease.	separating into	Students look at the	was formed, what it is
	communicable diseases. They	Students will make		fractions and properties	factors that can affect	made of, and how it has
	will understand the	estimations of	Energy Changes	of hydrocarbons.	the distribution of	changed since the
	development of cancer and	uncertainty with	Students will further	Students will learn	organisms and	formation of the Earth.
	the differences between	chemical measurements.	develop their	about the different	adaptations to help	Students will broaden
		Students	understanding of	structures and	them survive in an	their understanding of

malignant and benign	will use practical	exothermic and	applications of alkanes	ecosystem. They will	carbon dioxide and
tumours.	titrations to calculate the	endothermic reactions,	and alkenes including	describe methods to	methane as greenhouse
	mass of solute in a	including representing	methods of cracking to	measure the distribution	gases, including human
Chemical Changes	solution and use this to	them graphically,	produce alkenes.	of organisms and link	impacts, global climate
Students will study reacti	ons understand atom	explaining them in		their findings to	change and methods of
	ther economy and percentage	terms of particle	Force and Motion	adaptations of plants	reducing carbon
their understanding of h	yield. Some students will	collisions and giving	Students will apply their	and animals.	footprints. They will make
salts are formed and nar	go further to develop an	examples of each. They	knowledge of forces		cross-curricular links
including a required pract		will apply their	to represent motion.	Organic Reactions	between physics and
investigation. In additio	moles using moles to	knowledge to explain	Students will draw and	Students will study	biology, as well as
_	halance equations, the	how chemical and fuel	interpret graphs to	alkenes to a greater	geography. Students will
pupils will also be mad	effect of limiting	cells work. Some	calculate displacement,	depth than in the crude	be asked to analyse data
aware of how we can u	reactants and gases in	students will experience	velocity and time using	oil topic. They will learn	about the changing
titration as a practica	reactions,	the opportunity to	related and sometimes	to identify alkenes,	atmosphere and draw
method but will not be	und concentration using	calculate the energy	multi-step equations.	describe their reactions,	conclusions from it.
required to conduct the	s the units mol/dm ³ .	changes of reactions as	Students will also will	and describe the	
practical themselves.		bonds are broken and	learn real world	reactions of alcohols	
	Electrolysis	formed.	applications of force	and carboxylic acids.	Waves
Electricity in the Home	Students will develop		and motion by		Students will explore the
Electricity in the Home	Students will develop their understanding of	Rates and Equilibrium	and motion by determining braking	Polymers	Students will explore the properties of longitudinal
Students will build on th	Students will develop their understanding of what electrolysis is and	Rates and Equilibrium Students will continue to	and motion by determining braking and stopping distances	Polymers Students will be	Students will explore the properties of longitudinal and transverse waves.
Students will build on th understanding of energy	eir and its uses including	Rates and Equilibrium Students will continue to study a range of	and motion by determining braking	Polymers	Students will explore the properties of longitudinal
Students will build on th understanding of energy electricity by learning ab	eir and but their understanding of what electrolysis is and its uses including investigating the	Rates and Equilibrium Students will continue to study a range of chemical reactions to	and motion by determining braking and stopping distances	Polymers Students will be introduced to addition polymerisation,	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period,
Students will build on th understanding of energy electricity by learning ab electricity supply in the U	eir and out K to Students will develop their understanding of what electrolysis is and its uses including investigating the electrolysis of aqueous	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of	and motion by determining braking and stopping distances	Polymers Students will be introduced to addition polymerisation, synthetic polymers such	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference	eir and but K to ses Students will develop their understanding of what electrolysis is and its uses including investigating the electrolysis of aqueous solutions. Students will	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and	and motion by determining braking and stopping distances	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and	eir and but K to ces Students will develop their understanding of what electrolysis is and its uses including investigating the electrolysis of aqueous solutions. Students will be able to use their	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors	and motion by determining braking and stopping distances	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th	eir and but K to ses ey practical knowledge and	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air,
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th will understand energy	eir and but k to ces solutions. Students will be able to use their practical knowledge and mathematical skills to	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in terms of collision theory	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural polymer. Some students	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th will understand energy transfers and wiring in	eir and but K to ces solutions. Students will be able to use their practical knowledge and mathematical skills to predict observations at	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in terms of collision theory and activation energy.	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural polymer. Some students will go further to study	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a solid. Students will
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th will understand energy transfers and wiring in everyday appliances as v	eir and but K to ses ey full full full full full full full ful	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in terms of collision theory and activation energy. Students will extend this	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural polymer. Some students will go further to study condensation	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a solid. Students will investigate wave
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th will understand energy transfers and wiring in everyday appliances as w as the significance of pow	eir and but k to ces solutions. Students will be able to use their practical knowledge and mathematical skills to predict observations at electrodes and, in some cases, produce half	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in terms of collision theory and activation energy. Students will extend this knowledge by	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural polymer. Some students will go further to study condensation polymerisation as well	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a solid. Students will investigate wave measurements using a
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th will understand energy transfers and wiring in everyday appliances as w as the significance of pow ratings and how they car	eir and but set set set set set set set set set se	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in terms of collision theory and activation energy. Students will extend this knowledge by explaining reversible	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural polymer. Some students will go further to study condensation polymerisation as well as explaining amino	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a solid. Students will investigate wave measurements using a ripple tank and be able to
Students will build on th understanding of energy electricity by learning ab electricity supply in the U understand the difference between direct and alternating currents. Th will understand energy transfers and wiring in everyday appliances as w as the significance of pow	eir and but K to ses solutions. Students will be able to use their practical knowledge and mathematical skills to predict observations at electrodes and, in some cases, produce half equations to represent	Rates and Equilibrium Students will continue to study a range of chemical reactions to calculate the rate of reactions and understand the factors which determine it in terms of collision theory and activation energy. Students will extend this knowledge by	and motion by determining braking and stopping distances of vehicles.	Polymers Students will be introduced to addition polymerisation, synthetic polymers such as polythene and extend their understanding of DNA as a natural polymer. Some students will go further to study condensation polymerisation as well	Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a solid. Students will investigate wave measurements using a

Voor 11		Radioactivity Students will learn about the development of scientific models and theories with the development of our understanding of the atom, the subatomic particles and how changes in the nucleus of an atom causes radioactivity. Stud ents will learn about the different types of radioactivity through alpha, beta and gamma radiation, and explore their uses and the dangers. Students will be able to represent radioactive decay using half equations. Students will be able to compare irradiation and contamination and give examples of each.	affect a range of objects including more complex calculations of work done and applying Newton's Laws to explain what we		Force and Pressure Students will study pressure in fluids and atmospheric pressure to understand that both liquids and gases are fluids and pressure increases with depth. Students will learn to calculate pressure at the surface of a fluid and the pressure due to a column of liquid.	investigate the reflection of waves, looking at sound waves in greater depth and using waves for detection and exploration.
Year 11 (Triple)	Hormonal Coordination Students will be able to link hormones and homeostasis. Students specifically deepen their understanding of changes at puberty and	Students will develop	Genetics and Evolution Having developed a deeper understanding of genetic inheritance and evolution from previous topics, students will	revision plans, produced and delivered by their class teachers, for their	KEVISION/GCSE S.	GLSE'S.

				_	
	explain	evolution. Students will	explore further evidence	2	
	how hormones control the	explore Darwin's theory	to support the theory of	2	
	menstrual cycle.	of evolution by natural	evolution. Students will		
	Students will learn the role of	selection and explain the	make links between		
	the pancreas in controlling	evidence to support this	evolution and the uprise	2	
	blood glucose	theory. Students will also	of antibiotic resistant		
	concentrations, applying this	learn about selective	bacteria, as well as		
	to understand causes/	breeding techniques and	relating this to real-life		
	treatments of diabetes.	use their knowledge to	complications. Students	i	
	Students explore plant	evaluate the use of GM	will learn how		
1	responses to light and gravity	crops in industry.	organisms are classified	1	
	and how these are controlled		and be able to explain		
	by chemicals called auxins.	Using Our Resources	the importance of		
	Students will be able to	Students will learn	classification.		
c	describe and explain practical	about methods of			
	techniques to investigate the	improving or	Biodiversity and		
	effects of auxins.	synthesising materials to	Ecosystems		
		better suit their uses and	Students will build on		
	Homeostasis in Action	improve their longevity	prior learning of		
	Students will link their	including preventing	ecosystems and feeding	ŗ	
	learning of hormones to real		relationships. Looking at	t	
	life. Students will explain	ceramics, polymers and	the factors that can		
	how hormones interact to		affect the distribution of	f	
	control blood glucose levels	They will use their	organisms and		
	and water balance in the	, knowledge of equilibria	adaptations to help		
	body, including an in depth	to develop an	them survive in an		
	knowledge of the structure of		ecosystem. Students are	?	
	the kidney, which is essential		required to describe two)	
	learning for those continuing	fertiliser production. In	separate methods of		
	on to A level biology.	this topic, students are	practical techniques.		
	2.	expected to draw on	They will describe		
	Chemical Analysis		methods to measure the	2	
	Students will develop their	prior chemistry learning	distribution of		
	understanding of pure		organisms before		
	S S 1		·		

substances, mixtures and	to make educated links	learning how materials	i
chromatography including an	and explanations.	like carbon and water	
investigation to separate and		are recycled.	
differentiate between	Electromagnetism		
	Students will refresh and		ļ
will be able to describe how	extend their knowledge		ļ
to test for hydrogen, oxygen,	of magnets and		ļ
carbon dioxide and chlorine.	electromagnetism to		ļ
In addition students will learn	understand how a		
to identify ions present using	magnetic field is		ĺ
a range of chemical methods	produced when a current		ĺ
including flame tests or	passes through a wire.		l
through instrumental methods using spectroscopy.	Students will learn about		ĺ
methous using spectroscopy.	the motor effect,		ĺ
Earth's Resources	Fleming's left-hand rule		ĺ
Students will develop their	and loudspeakers and		ĺ
understanding of the limited	, will be able to explain		ĺ
resources available on Earth	each. Students will also		ĺ
and the role chemistry plays	develop an		ĺ
in improving agricultural and	understanding of the		ĺ
industrial contributions to	generator effect and its		ĺ
the resources we consume.	uses including		l
They will be introduced to life	microphones. They will		ĺ
cycle assessments to	integrate this knowledge		l
determine the environmental	the state of the state of the state of the		
inipuct of products us well us	of the national grid to		ĺ
methods of reducing waste. Some students will	understand how		l
also learn about alternative	transformers work.		ĺ
methods of extracting metals	-		ĺ
and be able to evaluate these	Space (Triple Only)		ĺ
methods.	Students will extend their		l
	knowledge of space,		

Electromagnetic Waves	starting with		
Students will develop their	understanding our place		
understanding from units	in the universe, before		
about light to understand the	looking at the lifecycle of		
electromagnetic spectrum,	a star and the effect of		
the properties and uses of its	gravity on the orbits of		
component parts. Some	planets and satellites.		
students will learn how	Students will integrate		
different wavelengths	knowledge of the		
refract, how to draw wave	electromagnetic		
front diagrams and how	spectrum into space		
radio waves and alternating	physics to explain red-		
currents are linked. Students	shift.		
will further their			
understanding of light			
refraction to explain how			
lenses work and the type of			
image they produce.			
Light			
Students will be able to			
explain visible light in more			
detail and understand how			
we see colour. This is			
essential learning before			
students are introduced to			
the concept of black body			
radiation.			

			KS5 SCIENCE			
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 12	Biological molecules	Biological molecules	Biological Molecules	Genes and Variation	Genes and Variation	Responses in plants an
BIOLOGY	Students will deepen their	The biochemistry of	The interplay between	This topic enables	Going further, pupils	animals
	understanding of the	proteins, DNA and ATP is	DNA and proteins in	learners to interleave	explore how we	Students explore
	macromolecules of life, their	essential fundamental	crucial in cell function,	and apply their	measure diversity	responses to stimuli i
	biochemistry and actions	knowledge to unlock	understanding protein	understanding of DNA in	through ecological	plants and animals. Th
	focusing on Water,	understanding of a host	synthesis is key to this.	contexts of mutation,	sampling and	are introduced to tax
	carbohydrates and lipids.	of biological processes,		reproduction and meiosis	quantitative measure of	and kinesis in animal
		including enzyme action	Cells and Exchange	which leads to genetic	variation. This is	and the role of auxin
	Cells	and protein synthesis.	Students continue to	diversity, adaptation and	then linked to the	and other hormones
	Students delve deeper into		develop their	selection. Pupils further	interdependence of	plants. They revisit th
	cell ultrastructure and	Cells	understanding of cellular	explore how this has	populations and	reflex arc from GCSE
	methods of studying cells.	Students link their	exchange through	helped models develop	ecosystems and how	greater depth, drawii
	They explore prokaryotes and	learning of DNA to	practical investigations	over time in how we	species are linked to	on A-level understand
	viruses as well as cell	describe mitosis and the	and statistical analysis.	classify organisms.	lead to succession,	of cells, and moveme
	specialisation.	cell cycle in detail,			natural selection and	of ions to explain how
		comparing this to	Immunity	Exchange	speciation.	electrical impulses ar
		prokaryotic division. They	Pupils gain a greater	Students focus on		formed in receptors i
		apply practical techniques	depth of understanding	physiology and organ	Exchange	response to light, tou
		to investigate mitosis	of the immune response	systems in plant and	Students focus on	and other
		using microscopy.	in both plants and	animal gas exchange.	physiology and organ	stimuli. Further
			humans, applying		systems in digestion in	application to explai
		Cellular Exchange	their knowledge of cell		humans, as well as	the electrical control
		Students build on	specialisation, proteins		mass transport in	the heartbeat and th
		knowledge from GCSE but	and cell membranes to		animals and plants	role of synapses.
		go further to explain	new contexts within		through exploration of	
		osmosis, diffusion and	immunity. They explore		blood and circulation as	Populations and
		active transport with	how our understanding		well as transpiration	ecosystems
		reference to the	has led to practical and		and translocation.	Ecosystems are dynan
		specific structures of the	, medical applications			with competition,
		cell membrane using	through viral research			predation and
		the fluid mosaic model	and HIV as well as			succession being key

		and	monoclonal antibody			processes in
		specialist terminology to	testing and			interdependence.
		explain each process in a	treatments. Pupils			Students apply their
		variety of contexts.	conduct their own			understanding to explain
			investigations into			variation in populations
			microbiology using			and how to investigate
			aseptic techniques.			this through fieldwork
						and conservation.
Year 13	Nerves and Muscles	Homeostasis	Inheritance	Energy and Ecosystems	Revision	
BIOLOGY	Students go further to	Students reflect and build	Building on genetics from	Pupils recap their		
DIOLOGI	examine and explain how	on understanding of	GCSE, students go	understanding of		
	action potentials are created	negative feedback and	further to understand	ecosystems and transfer		
	and propagated along an	the role of endocrine	monohybrid and dihybrid	of energy and biomass.		
	axon. They will explain	glands in osmo-	inheritance as well as	They explore nutrient		
	the processes at a	and gluco-regulation.	codominance, linkage	cycles more closely and		
	synapse and how nervous	They explore	and the effects of	the environmental		
	action is coordinated. They	in more detail	epistasis. Students also	impacts of different		
	will also learn the gross	the structures of the	look more closely at the	agriculture practices on		
	structure of muscles and how	pancreas, liver and	Chi squared test.	ecosystems and		
	stimulation at	kidneys to explain their		biodiversity.		
	a neuromuscular junction and		Control of gene			
	movement of ions and the	consequences	expression	Control of gene		
	proteins actin and	and treatments if these	Building on	expression		
	myosin result in muscle	organs fail (e.g. diabetes	5,5	Students look in detail at		
	contraction via a power	or dialysis).	cells and genetic	the processes involved		
	stroke.		engineering, students	with amplifying and		
		Respiration	look more closely at	manipulating DNA in in		
	Photosynthesis	Students delve deeper	regulation of	vivo cloning and in vitro		
	Students delve deeper into	into the sub-structure of	transcription and	cloning (PCR), as well as		
	the structure of chloroplasts	mitochondria and the	translation,	genetic fingerprinting		
	and the biochemistry of	biochemistry of	exploring epigenetics and			
	photosynthesis exploring (1)	respiration as a four	cancer.	gel electrophoresis		
	the light-dependent reactions			and its application to		
	and (2) the light-independent	of glycolysis, pyruvate		genome sequencing.		

	reacti Physiasio-cAtlochto e Ivin cycle)Striuctene s further	okide <mark>Rinysicale-KAdolmin</mark> ycle and Structure on	Physical – Amount of Substance	Physical – Energetics (Inc. RP2)	Physical – Kinetics (Inc. RP3)	Physical – Equilibria A study of equilibria
	eveStpdenets leadershortdiney	transp(Intoc/RPA)using	Students will build on	The enthalpy change	The study of kinetics	indicates how far
CHERAICTOW	of expreminiealtptopehrticsues	oxidation and reduction	their knowledge from	in a chemical reaction	enables chemists to	reactions will go. Le
	the longents despiced ion their	Rbysipatin Aneouoti/of	KS4 quantitative	can be measured	determine how a	Chatelier's principle
D	hototomticesticycitymeatscland	events Substande in the	chemistry learning	accurately. It is	change in conditions	can be used to predict
<i>P</i> .	of the photogenthesisf	Stadaotiswidf buildion	about the mole as a	important to know	affects the speed of a	the effects of changes
	electroatsansound the	athebikmondladgerføbin	measure of the amount	, this value for chemical	chemical reaction.	in temperature,
	nucleus in orbitals.	K Selsquiranttötra tive	of a substance. An	reactions that are	Whilst the reactivity	pressure and
	Students learn how	chemistry learning	amount in moles can	used as a source of	of chemicals is a	concentration on the
	Chemists can measure the	about the mole as a	be measured out by	heat energy in	significant factor in	yield of a reversible
	mass of atoms and	measure of the	mass in grams, by	applications such as	how fast chemical	reaction. This has
	molecules to a high degree	amount of a	volume in dm ³ of a	domestic boilers and	reactions proceed,	important
	of accuracy in a mass	substance. An	solution of known	internal combustion	there are variables	consequences for
	spectrometer.	amount in moles can	concentration and by	engines.	that can be	many industrial
		be measured out by	volume in dm ³ of a gas.		manipulated in order	processes. The further
		mass in grams, by			to speed them up or	study of the
		volume in dm ³ of a			slow them down	equilibrium constant,
		solution of known				K_{c} , considers how the
		concentration and by				mathematical
		volume in dm ³ of a				expression for the
		gas.				equilibrium constant
						enables us to calculate
						how an equilibrium
						yield will be influenced
						by the concentration
						of reactants and
						products.
	Organic – Intro to organic	Organic – Alkanes	Organic – Haloalkanes	Organic – Alkenes	Organic – Alcohols	Organic – Organic
	Organic chemistry is the	Alkanes are the main	Halogenoalkanes are	In alkenes, the high	(Inc. RP5)	Analysis
	study of the millions of	constituent of crude	much more reactive	electron density of the	Alcohols have many	(Inc. RP6)
	covalent compounds of the	oil, which is an	than alkanes. They	carbon–carbon double	scientific, medicinal	Our understanding of
	element carbon.	important raw	have many uses,	bond leads to attack	and industrial uses.	organic molecules,
		material for the	including as	on these molecules by	Ethanol is one such	their structure and the

These structurally diverse	chemical industry.	refrigerants, as	electrophiles. This	alcohol and it is	way they react, has
compounds vary from	Alkanes are also used	solvents and in	section also covers the	produced using	been enhanced by
naturally occurring	as fuels and the	pharmaceuticals. The	mechanism of	different methods,	organic analysis. This
petroleum fuels to DNA	environmental	use of some	addition to the double	which are considered	section considers
and the molecules in living	consequences of this	halogenoalkanes has	bond and introduces	in this section.	some of the analytical
systems. Organic	use are considered in	been restricted due to	addition polymers,	Ethanol can be used	techniques used by
compounds also	this section.	the effect of	which are	as a biofuel.	chemists, including
demonstrate human		chlorofluorocarbons	commercially		test-tube reactions
ingenuity in the vast range		(CFCs) on the	important and have		and spectroscopic
of synthetic materials		atmosphere.	many uses in modern		techniques.
created by chemists. Many			society.		
of these compounds are					
used as drugs, medicines					
and plastics.					
Organic compounds are					
named using the					
International Union of					
Pure and Applied					
Chemistry (IUPAC) system					
and the structure or					
formula of molecules can					
be represented in various					
different ways. Organic					
mechanisms are studied,					
which enable reactions to					
be explained.					
In the search for					
sustainable chemistry, for					
safer agrochemicals and					
for new materials to match					
the desire for new					
technology, Chemistry					
plays the dominant role.					

	Physical – Bonding The physical and chemical properties of compounds depend on the ways in which the compounds are held together by chemical bonds and by intermolecular forces. Theories of bonding explain how atoms or ions are held together in these structures. Materials scientists use knowledge of structure and bonding to engineer new materials	Physical – Redox Redox reactions involve a transfer of electrons from the reducing agent to the oxidising agent. The change in the oxidation state of an element in a compound or ion is used to identify the element that has been oxidised or reduced in a given reaction. Separate	Inorganic – Periodicity Group 2 The elements in Group 2 are called the alkaline earth metals. The trends in the solubilities of the hydroxides and the sulfates of these elements are linked to their use. Barium sulfate, magnesium hydroxide and magnesium sulfate have applications in medicines whilst	Inorganic – Group 7 (Inc. RP4) The halogens in Group 7 are very reactive non-metals. Trends in their physical properties are examined and explained. Fluorine is too dangerous to be used in a school laboratory but the reactions of chlorine are studied. Challenges in studying	Inorganic – Properties of period 3 Oxides (A2 Content) The reactions of the Period 3 elements with oxygen are considered. The pH of the solutions formed when the oxides react with water illustrates further trends in properties across this period. Explanations of these	
	with desirable properties. These new materials may offer new applications in a range of different modern technologies	half-equations are written for the oxidation or reduction processes. These half-equations can then be combined to give an overall equation for any redox reaction.	calcium hydroxide is used in agriculture to change soil pH, which is essential for good crop production and maintaining the food supply.	the properties of elements in this group include explaining the trends in ability of the halogens to behave as oxidising agents and the halide ions to behave as reducing agents	reactions offer opportunities to develop an in-depth understanding of how and why these reactions occur.	
Year 13 CHEM	Physical – Thermodynamics (Inc. RP7) The further study of thermodynamics builds on the Energetics section and is important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with	Physical – Rates In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps	Physical – Electrode Potentials (Inc. RP 8) Redox reactions take place in electrochemical cells where electrons are transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A	Physical – Acids and Bases (Inc. RP 9) Acids and bases are important in domestic, environmental and industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a	Revision	Revision

entropy change enabling the	Physical –	potential difference is	logarithmic scale, pH, has	
free-energy change to be	Equilibrium	created that can drive an	been devised to measure	
calculated.	The further study of	electric current to do work.	acidity. Buffer solutions,	
	equilibria considers how	Electrochemical cells have	which can be made from	
	the mathematical	very important commercial	partially neutralised weak	
	expression for the	applications as a portable	acids, resist changes in pH	
	equilibrium constant K_p	supply of electricity to	and find many important	
	enables us to calculate	power electronic devices	industrial and biological	
	how an equilibrium yield	such as mobile phones,	applications.	
	will be influenced by the	tablets and laptops. On a	Inorganic	
	partial pressures of	larger scale, they can	Transition metals	
	reactants and products.	provide energy to power a	The 3d block contains 10	
	This has important	vehicle.	elements, all of which are	
	consequences for many	Physical – Acids and	metals. Unlike the metals	
	industrial processes	Bases (Inc. RP 9)	in Groups 1 and 2, the	
		Acids and bases are	transition metals Ti to Cu	
		important in domestic,	form coloured	
		environmental and	compounds and	
		industrial contexts. Acidity	compounds where the	
		in aqueous solutions is	transition metal exists in	
		caused by hydrogen ions	different oxidation states.	
		and a logarithmic scale, pH,	Some of these metals are	
		has been devised to	familiar as catalysts. The	
		measure acidity. Buffer	properties of these	
		solutions, which can be	elements are studied in	
		made from partially	this section with	
		neutralised weak acids,	opportunities for a wide	
		resist changes in pH and	range of practical	
		find many important	investigations	
		industrial and biological	Reactions of ions (Inc.	
		applications.	RP 11)	
			The reactions of transition	
			metal ions in aqueous	
			solution provide a	
			practical opportunity for	
			students to show and to	
			understand how	
			transition metal ions can	
			be identified by test-tube	

			reactions in the		
			laboratory.		
Organic -	Organic –	Organic –	Organic –	Revision	Revision
Amino acids, proteins and	Aldehydes and	Amines	Synthesis		
DNA	ketones	Amines are compounds	The formation of new		
Amino acids, proteins and	Aldehydes, ketones,	based on ammonia	organic compounds by		
DNA are the molecules of	carboxylic acids and	where hydrogen atoms	multi-step syntheses		
life. In this section, the	their derivatives all	have been replaced by	using reactions		
structure and bonding in	contain the carbonyl	alkyl or aryl groups.	included in the		
these molecules and the	group which is	This section includes	specification is		
way they interact is	attacked by	their reactions as	covered in this section.		
studied. Drug action is also	nucleophiles. This	nucleophiles.	NMR		
considered.	section includes the	Polymers	Chemists use a variety		
Optical Isomerism	addition reactions of	The study of polymers	of techniques to		
Compounds that contain	aldehydes and	is extended to include	deduce the structure		
an asymmetric carbon	ketones.	condensation polymers.	of compounds. In this		
atom form stereoisomers	Carboxylic acids (Inc.	The ways in which	section, nuclear		
that differ in their effect on	RP 10)	condensation polymers	magnetic resonance		
plane polarised light. This	Carboxylic acids are	are formed are studied,	spectroscopy is added		
type of isomerism is called	weak acids but	together with their	to mass spectrometry		
optical isomerism.	strong enough to	properties and typical	and infrared		
	liberate carbon	uses. Problems	spectroscopy as an		
	dioxide from	associated with the	analytical technique.		
	carbonates. Esters	reuse or disposal of	The emphasis is on the		
	occur naturally in	both addition and	use of analytical data		
	vegetable oils and	condensation polymers	to solve problems		
	animal fats.	are considered.	rather than on		
	Important products		spectroscopic theory.		
	obtained from esters		Chromatography		
	include biodiesel,		(Inc. RP 12)		
	soap and glycerol		Chromatography		
	Aromatic chemistry		provides an important		
	Aromatic chemistry		method of separating		
	takes benzene as an		and identifying		

				-		<u>.</u>
		example of this type		components in a		
		of molecule and looks		mixture. Different		
		at the structure of		types of		
		the benzene ring and		chromatography are		
		its substitution		used depending on the		
		reactions		composition of		
				mixture to be		
				separated	1	
	Particles and Radiation	Photoelectric effect	Electricity	Electricity RP5, RP6	Nuclear Physics	Nuclear Physics
Year 12	This section introduces	Students should	This section builds on	Students learn about	RP12	Estimate of radius
PHYSICS	students both to the	know that electron	and develops earlier	potential dividers and	This section builds	from closest approach
FITSICS	fundamental properties of	diffraction suggests	study of these	they learn to construct	on the work of	of alpha particles and
	matter, and to	that particles possess	phenomena from	and include potential	Particles and	determination of
	electromagnetic radiation	wave properties, and	GCSE. It provides	dividers in electric	radiation to link the	radius from electron
	and quantum phenomena.	the photoelectric	opportunities for the	circuits.	properties of the	diffraction. Knowledge
	Through a study of these	effect suggests that	development of	Students will be	nucleus to the	of typical values for
	topics, students become	electromagnetic	practical skills at an	expected to	production of	nuclear radius.
	aware of the way ideas	waves have a	early stage in the	understand and	nuclear power	Students will need to
	develop and evolve in	particulate nature.	course and lays the	perform calculations	through the	be familiar with the
	physics. They will	The ultraviolet	groundwork for later	for circuits in which the	characteristics of the	Coulomb equation for
	appreciate the importance	catastrophe and	study of the many	internal resistance of	nucleus, the	the closest approach
	of international	black-body radiation.	electrical applications	the supply is not	properties of	estimate.
	collaboration in the	Planck's	that are important to	negligible	unstable nuclei, and	Appreciation that E =
	development of new	interpretation in	society.	Applications of	the link between	mc 2 applies to all
	experiments and theories	terms of quanta. The	Description of the	superconductors to	energy and mass.	energy changes,
	in this area of fundamental	failure of classical	qualitative effect of	include the production	Students should	Simple calculations
	research.	wave theory to	temperature on the	of strong magnetic	become aware of	involving mass
		explain observations	resistance of metal	fields and the	the physics that	difference and binding
		on photoelectricity.	conductors and	reduction of energy	underpins nuclear	energy. Atomic mass
		Einstein's	thermistors.	loss in transmission of	energy production	unit, u. Conversion of
		explanation of	Applications of	electric power	and also of the	units; 1 u = 931.5
		photoelectricity and	thermistors to include			MeV. Fission and
L				1	1	

Waves RP1	its significance in terms of the nature of electromagnetic radiation Waves RP2	temperature sensors and resistance– temperature graphs. Superconductivity as a property of certain materials which have zero resistivity at and below a critical temperature which depends on the material. Materials RP4	Terminal pd; emf Students will be expected to understand and perform calculations for circuits in which the internal resistance of the supply is not negligible.	impact that it can have on society. Investigate the decay equation using a variety of approaches (including the use of experimental data, dice simulations etc) and a variety of analytical methods.	fusion processes. Simple calculations from nuclear masses of energy released in fission and fusion reactions. Graph of average binding energy per nucleon against nucleon number.
Waves RP1 GCSE studies of wave phenomena are extended through a development of knowledge of the characteristics, properties, and applications of travelling waves and stationary waves. Topics treated include refraction, diffraction, superposition and interference.	Waves RP2 Investigation of two- source interference with sound, light and microwave radiation. Students will be expected to describe and explain interference produced with sound and electromagnetic waves. Appreciation of how knowledge and understanding of nature of electromagnetic radiation has changed over time.	Materials RP4 This unit is an extension of GCSE, students learn about Hooke's law, tensile strain and tensile stress. Description of plastic behaviour, fracture and brittle behaviour linked to force–extension graphs. Quantitative and qualitative and qualitative application of energy conservation to examples involving elastic strain energy and energy to deform. Spring energy transformed to kinetic	Mechanics RP3 Vectors and their treatment are introduced followed by development of the student's knowledge and understanding of forces, energy and momentum. The section continues with a study of materials considered in terms of their bulk properties and tensile strength. As with earlier topics, this section and also the following section Electricity would provide a good starting point for students who		

Year 13 PHYSICS	Fields – Gravitational fields, Electric fields RP10, Rp11 Students learn about gravity as a universal attractive force acting between all matter. Magnitude of force between point masses: F = Gm1m2 r 2 where G is the gravitational constant. Students learn to estimate various parameters of planetary orbits, eg kinetic energy of a planet in orbit.	Fields – Capacitor charge and discharge RP9 Students learn about the definition of capacitance: C = Q/ V. Students learn about the action of a simple polar molecule that rotates in the presence of an electric field. Determine the relative permittivity of a dielectric using a parallel-plate capacitor. Investigate the relationship between C and the dimensions of a parallel-plate capacitor.	and gravitational potential energy. Interpretation of simple stress-strain curves Fields - Magnetic fields Students learn about force on a current- carrying wire in a magnetic field: F = BII when field is perpendicular to current. Fleming's left hand rule. Magnetic flux density B and definition of the tesla. Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance	prefer to begin by consolidating work. Measurement and errors Students learn about random and systematic errors. Precision, repeatability, reproducibility, reproducibility, resolution and accuracy. Uncertainty: Absolute, fractional and percentage uncertainties represent uncertainty in the final answer for a quantity. Combination of absolute and percentage uncertainties. Represent uncertainty in a data point on a graph using error bars. Determine the uncertainties in the gradient and intercept of a straight-line graph. Individual points on		
--------------------	--	--	--	---	--	--

Further Mechanics RP8 The earlier study of mechanics is further advanced through a consideration of circular motion and simple harmonic motion (the harmonic oscillator). A further section allows the thermal properties of materials, the properties and nature of ideal gases, and the molecular kinetic theory to be studied in depth.	Further Mechanics Students should recognise the use of the small-angle approximation in the derivation of the time period for examples of approximate SHM. Investigation of the factors that determine the resonant frequency of a driven system.	Thermal Physics Students should be able to investigate the factors that affect the change in temperature of a substance using an electrical method or the method of mixtures. Students should be able to identify random and systematic errors in the experiment and suggest ways to remove them.	the graph may or may not have associated error bars. Astrophysics Fundamental physical principles are applied to the study and interpretation of the Universe. Students gain deeper insight into the behaviour of objects at great distances from Earth and discover the ways in which information from these objects can be gathered. The underlying physical principles of the devices used are covered and some indication is given of the new information gained by the use of radio astronomy. The discovery of exoplanets is an example of the way in which new information is gained by astronomers	Revision	
--	--	---	--	----------	--