	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 7 Students will build on KS2 learning to further develop their understanding of Structure of the s	Cells udents will study key features and inctions of plants animal cells. They will develop erstanding of how is are adapted for eir function. They will understand ictural differences tween unicellular ind multicellular ganisms and how ibstances can be transported by diffusion. Particles dents further their derstanding of the properties of iter in terms of the particle model. dents learn about anges in state of matter and will explore how to present this with agrams. Students	Interdependence Students will be able to classify animals based on their physical characteristics and understand how changes in the environment can impact food chains / webs and the abundance of organisms. Forces Students explore how forces interact with objects to change their speed, shape or direction and represent these as force diagrams. They will investigate friction and measure forces in stretching and squashing. Atoms, Elements, Compounds Students further their understanding of matter and materials by learning about	Movement Students will explore the key features and functions of the skeleton, identify key parts of joints, and understand how muscles and joints work together to allow movement of the body. Gravity Students develop their understanding of gravity as a force including the difference between mass and weight, how gravity varies across the solar system, and how to draw a force diagram.	Science Week Students spend time exploring the specific theme set for British Science Week. Activities during these lessons can include research using digital technology, exploration using virtual reality headsets, bespoke investigations and more. Energy transfers Students will be introduced to the law of conservation of energy using an energy model where energy is transferred from one store at the start to another at the end.	Reproduction Students will build on learning from KS2 of the different ways in which plants can disperse their seeds, the key structures of the plant reproductive system and the process of pollination. Students will build on their knowledge of human reproduction. They will learn the differences between sexual and asexual reproduction, identify the key structures and processes of the male and female reproductive system, (including menstruation), before exploring the process of fertilisation. Here, students will be encouraged to make links with the PSHE curriculum on contraception and fertility.	Summer 2 Movement (speed) Students develop their understanding of forces and apply this to motion. Students will use maths skills to calculate speed and represent journeys on a distance-time graph. Electric circuits: current and PD Students explore how energy is transferred electrically in a circuit. Students will have the opportunity to build their own series and parallel circuits and draw scientific diagrams of these. Students will use their maths skills to calculate current and potential difference, using readings from practical investigations. Invention Convention Students explore the world of STEM beyond the National

	will have the opportunity to investigate changes of state, which may introduce them to variables and	atoms, elements and compounds. Students are introduced to chemical symbols and formulae.			Mixtures Students build on their knowledge of the states of matter to describe materials as pure and impure. In	Curriculum. In these lessons, students are encouraged to be creative, and propose an invention that falls into one of three categories: 'helping the
	investigative techniques for the first time.				this topic, they will learn what makes a substance pure, what makes a mixture and simple methods that can be used to separate mixtures.	planet', 'helping humans', 'helping animals'. Students produce a prototype of the invention in small groups and a pitch to sell it. The best inventions for each class, as voted by the pupils themselves, go on to compete in the grand finale for exciting STEM prizes.
Year 8	Breathing and Respiration Students will understand the parts of the breathing system and how they play a role during the processes of inhaling and exhaling. Students will describe how gas is exchanged in the lungs, the effect of exercise on	Photosynthesis Students will further develop knowledge of how plants survive and the key concepts of photosynthesis. They will be able to name, label and describe the functions of tissues within a leaf and their role in photosynthesis, developing practical skills while learning	Earth Resources Students will relate their understanding of recycling to the limited nature of resources on Earth. They will learn about the different ways metals are found and the best methods to extract them. Students will be	Science Week Students spend time exploring the specific theme set for British Science Week. Activities during these lessons can include research using digital technology, exploration using virtual reality headsets, bespoke investigations and more.	Drugs Students will be able to understand the term "drug" and classify drugs in different ways, including their legal status and their effects on the body. With strong links to PSHE, students will learn why people choose to take recreational drugs and the effects these can	Waves: Light and Sound Students will learn about wave properties and relate them to sound and light. Students will have some knowledge of sound and light from KS2, therefore the introduction of scientific vocabulary

breathing and how smoking can impact gas exchange. Students will develop understanding of the *importance of* respiration in living organisms. Students will be able to describe the differences between aerobic and anaerobic respiration and how respiration links to fermentation and its uses in the food and drinks industry.

Periodic Table and Metals/Non-Metals

Students will further their knowledge of matter by sorting elements using chemical data and linking this to their position in the periodic table.
Students learn about patterns in reactivity and the properties and uses of metals

how to test a leaf for the presence of starch.

Acids and Alkali

Students will further their understanding of acids and alkalis to investigate neutralisation reactions when an acid reacts with an alkali. They will be able to describe properties of acids and alkalis including their pH, give examples of each and safety precautions when handling them.

Electrical Circuits: Resistance

Students will build upon knowledge of electrical circuits, current and potential difference. They will link this knowledge to a new concept: resistance. Students will learn about the relationships between each concept and apply their knowledge using

introduced to reactivity and electrolysis.

Digestion

Students will also be able to describe the function of key structures of the digestive system and how they facilitate the digestion of food. Students will understand the importance of a healthy diet, the uses of nutrients found in food and consequences of poor diet. They will also understand how enzymes play a role in digestion.

Pressure

Students build upon their mathematical knowledge to calculate and explore the relationships between volume, area and pressure. They will look at how pressure changes with depth in

Variation and Inheritance

Students will discuss variation within and between species, as well as linking their ideas of inheritance to the reproduction topic. Students will understand structures within the genome and the role of genes durina inheritance. Students will be able to describe how variation occurs in a population and how this leads to differences in characteristics. They will also develop their skills of presenting scientific data.

Earth Structure

Students will extend their knowledge of rocks and rock formation to explain how the rock layers inside the Earth have formed. Students will develop their scientific communication skills to

have on their physical and mental wellbeing.

will be used to help them make more detailed links between the transfers of energy, waves and how we hear/see things. Students will be able to state the similarities and differences between light and sound waves. They will study and draw ray diagrams to explain what happens when light hits different surfaces and learn how lenses work, such as in the eve.

Science Skills

Students round off
their learning in Year 8
science by
consolidating key
disciplinary knowledge
from Year 7 and Year 8.
Activities in this unit
are carefully mapped
out to encourage
mastery of the skills
required to access Year
9 and GCSE science.

	and non-metals. Students will learn how reactions with oxygen and acids can help determine the reactivity of a metal, applying this to	equations to calculate values for each. Students will have the opportunity to explore each concept with practical investigations.	a liquid and with height in air.	represent the information in a comprehensive diagram.		
	explain displacement reactions.					
Year 9	Evolution	Chemical Energy	Space and Universe	Cell Structure and	Cell Division	Organisation and the
	Students will further	Students will build on	Students will further	Transport	Students continue to	Digestive System
	develop	their understanding of	their understanding of	Students revisit cells	explore how cells are	Students will relate
	understanding of	chemical reactions to	gravity and how it	and build upon their	the building blocks of	their knowledge of
	variation and how	determine whether	connects all things	fundamental KS3	life. Students will	organisation to the
	this can give an	energy is required or	within the universe as	knowledge as they	understand why cells	digestive system.
	organism a survival	released when a	well as the structure of	enter their GCSE	divide and use their	Students will apply
	advantage to drive	reaction takes place.	the solar system, why	biology studies. Here,	knowledge of the cell	their KS3 knowledge of
	natural selection.	They will be able link	we are held in orbit	GCSE-level vocabulary	cycle to solve related	balanced diets and the
	They will understand	this to whether bonds	and have seasons and	will be explored and	problems, such as how	structures and
	the importance of	are broken or being	night and day.	students will classify	a tumour forms or how	functions of the
	biodiversity and	formed and will be able		cells in more scientific	long it may take a	digestive system
	factors that may	to use the keywords	Chemical Changes	ways, for example,	wound to heal.	enhance their
	affect it.	exothermic,	Students will look at	eukaryotic and	Students will be able to	understanding of
		endothermic and	combustion and	prokaryotic. Students	fully explain the	digestion.
	Work	catalysts.	thermal decomposition	will develop	functions of specialised	Students be able to
	Students will be able		reactions to deepen	microscope techniques	cells and the functions	describe and carry out
	to explain that work	Magnetism	their understanding of	and apply	and uses of stem cells	food tests using
	is done and energy is	Students will build	chemical and physical	mathematical skills to	in real-life. Students	chemical reagents and
	transferred when a	upon their	changes. Students will	calculate	will evaluate the use of	interpret the results to
	force moves an	understanding of	be introduced to	magnification.	stem cells in medicine.	determine the
	object. They will	magnetism. They will	conservation of mass	Students will also		composition of foods.

investigate how simple machines such as levers and pulleys make work easier. The skills developed here will form the fundamental knowledge required to understand work done at GCSE level.

Climate

Students will be introduced to the composition of Earth's atmosphere, the carbon cycle and the effect of human activity on both the carbon cycle and the climate. This feeds into the biology topic Human Interaction, which is taught in Spring 1.

Heating and cooling

Students will further their understanding of energy and be able to explain that the thermal energy depends on the learn to draw magnetic field lines including when magnets attract or repel each other.
They will also integrate knowledge from the current and potential difference topics to design and test electromagnets.

Human Interaction

Students will use their knowledge of variation, interdependence, respiration and photosynthesis in this unit. They will develop an understanding of the importance of sustainability to help pupils make responsible lifestyle choices. Pupils will go on to learn more about conservation and relationships in ecosystems, which will be further developed at GCSE level.

during a reaction,
which will form the
foundational
knowledge required for
GCSE quantitative
chemistry, e.g., atom
economy.

explore the different
ways in which
substances are
transported into/out of
cells and investigate
diffusion and osmosis
using practical
techniques.

Molecules and Matter

Following on from energy transfers by heating, students explore the particle model in further detail to develop their understanding of changing states. This links closely with internal energy from the previous topic. In this topic, pupils will complete another required practical, this time on density.

Atomic StructureStudents revisit atomic

structure and are

reminded that atoms are the building blocks of our world. Students will build upon their fundamental KS3 knowledge as they enter their GCSE chemistry studies. Students explore the history of the atom and consider different scientific theories, which will lead them to be able to explain why theories can change over time. Students will use their knowledge of compounds and mixtures to fully explain separating techniques.

Students will recap prior learning on enzymes and learn the mechanics of enzyme action and the effect that changes in temperature and pH can have on it.

Periodic Table

Students will expand their understanding of the periodic table, its historical development and arrangement. They will be able to explain the differences between metals and non-metals as well as identifying the properties of group 0, group 1, group 7 elements as well as transition metals and be able to compare them to group 1 elements.

material, mass and			
temperature of an			
object. They will learn			
about different			
methods of heating			
and that energy			
transfers from hotter			
objects to cooler			
ones. This topic has			
ample cross-curricular			
links with maths and			
will have			
opportunities to apply			
their mathematical			
skills during data			
analysis.			

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 10	Periodic Table	Electricity in the Home	Chemical Changes	Photosynthesis	Molecules and Matter	Preventing and Treating
	Students will expand	Students will build on their	Students will study	Students review and	(for Y10 2024-25 only)	Disease
	their understanding of	understanding of energy	reactions of metals with	extend their	Following on from energy	Pupils explore how
	the periodic table, its	and electricity	acid to further their	understanding	transfers by heating,	vaccination works and
	historical dayalanmant	by learning about	understanding of how	of photosynthesis, leaf	students explore the	how vaccines are used to
	and arrangement. They	electricity supply in the UK	salts are formed and	structure and the	particle model in further	control the spread of a
	will be able to explain	to understand the	named including a	transport of glucose and	detail to develop their	specific pathogen. Pupils
	the differences	differences between direct	required practical	water through the plant	understanding of	gain an appreciation of
	••	and alternating currents.	investigation. In	between the soil, air,	changing states. This links	the processes involved
	between metals and	They will understand	addition, pupils will also	roots, and leaves. They	closely with internal	in drug discovery and
	non-metals as well as	energy transfers and	be made aware of how	will explore how factors	energy from the previous	development and will be
	identifying the	wiring in everyday	we can use titration as a	can affect the rate of	topic. In this topic, pupils	able to explain the stage
	properties of group 0,	appliances as well as the	practical method but will	photosynthesis, focusing	will complete another	in this process. Finally,
	group 1, group 7	significance of power	not be required to	on the effect of	required practical, this	students will be able to
	elements as well as	ratings and how they can	conduct this practical	light intensity on the rate	time on density.	explain how plants are
	transition metals and	be used to determine the	themselves.	of photosynthesis for a	Radioactivity	useful in medicine, and
	be able to compare	appropriate fuse.		practical investigation.	Students will learn about	the treatments available
	them to group 1		Chemical Calculations	Lastly, they will be able to	the development of	for plant diseases.
	elements.	Organising Plants and	Students will apply their	explain how glucose is	scientific models	Students will be able to
			understanding of	used by the plant. Some	and theories with	extrapolate information
		Animals	conservation to the mass	pupils will be able to link	the development of our	from data surrounding
	Conservation and	Students will continue to	in reactions to balance	photosynthesis to cost-	understanding of the	vaccination.
	Dissipation of Energy		equations and determine	effective crop growth.	atom, the subatomic	
	Students revisit energy	organisms work. Leading	the relative formula		particles and how	Monoclonal Antibodies
	concepts from KS3 and	on from the digestive	mass of products and	Respiration	changes in the nucleus of	(biology separate science
	build upon their	system, students will	•	Students will build on prior	an atom	pathway only)
	fundamental	deepen their		learning to understand the	causes radioactivity. Stud	Students will explore the
	knowledge. Students	understanding of how the	to explain why reactions	fundamentals of both	ents will learn about the	production and uses of
	will make connections	structures in the breathing	producing gases appear	aerobic and anaerobic	different types of	monoclonal antibodies i
	between energy stores,	and circulatory systems	to lose mass and make	respiration. They will	radioactivity through	medicine. Students
	between energy stores,	are adapted and their role	estimations of	explore graphical data to	alpha, beta and gamma	deepen their

energy transfers and efficiency. Students will apply mathematical skills to real-life examples of energy transfers and understand how everyday products work in terms of energy.

Energy Transfer by Heating

Students link their prior *learning of energy* transfers to thermal conductivity. In this topic, pupils will complete the specific heat capacity required practical, as well as skills in rearranging equations and drawing This topic also makes "real life", as it explores ways that homeowners can save

in the transport of materials around the body. Students will also study plant transport system, which forms the underlying principles of understanding for photosynthesis.

Structure and Bonding

Students will be introduced to the fundamental concepts of how atoms join to form different compounds by covalent, ionic and metallic bonding. They will be able to identify, describe and draw diagrams to represent each type of bond. They will extend their knowledge linking bonding developing their maths and structure to properties such as melting and boiling points of heating/cooling curves. substances including ionic compounds, small more obvious links with molecules, polymers, giant covalent structures, metals and alloys.

Space (physics separate

uncertainty with chemical measurements.

Titrations (chemistry separate science pathway only)

Students will also be made aware of how we can use titration as a practical method but will not be required to conduct this practical themselves.

learn how the body's response to exercise facilitates an increase in the rate of respiration and the uses of the energy released from respiration in both animals and plants. Students are introduced to metabolic reactions and will be able to describe what "metabolism" means

Electrolysis

Students will develop their understanding of what electrolysis is and its uses including investigating the electrolysis of aqueous solutions. Students will be able to use their practical Students will explore why knowledge and mathematical skills to predict observations at electrodes and, in some cases, produce half equations to represent the reactions happening at electrodes.

Energy Changes

Students will further develop their understanding of

radiation, and explore their uses and the dangers. Students will be able to represent radioactive decay using half equations. Students will be able to compare irradiation and contamination and give examples of each.

Communicable Disease

Students will learn about viral, fungal, bacterial and a protist disease considering the methods of transfer, symptoms and treatments across a range of human examples. pathogens make us ill, the *immune system's* response to infection and how we can prevent infection.

Cells, batteries and fuel cells (chemistry separate science pathway only) Students will delve further into the topic of Energy Changes and apply their knowledge to explain

understanding of plant disease, mineral deficiencies and how to detect and treat plant disease.

Non-

Communicable Disease

Students will develop understanding of correlation and cause by building on their KS3 knowledge of drugs. Students will discuss how drugs and other lifestyle factors like diet and exposure to radiation can impact on health and increase the risk of noncommunicable diseases. They will understand the development of cancer and the differences between malignant and benian tumours.

Organising an **Ecosystem**

Pupils revisit learning from KS2 and KS3 *surrounding interactions* in ecosystems, however,

money on their energy bills by investing in different types of insulation.

Electrical Circuits

Students will build upon knowledge of electrical circuits. current, resistance and potential difference, learning about the relationships between them, equations to calculate them, and extending to static charges and electric fields. Students will investigate how different components and arrangements of circuits affect the resistance.

Static electricity
(physics separate
science pathway only)
Students will delve
further into the topic of
electrical circuits to

science pathway only)

Students will extend their knowledge of space, starting with understanding our place in the universe, before looking at the lifecycle of a star and the effect of gravity on the orbits of planets and satellites.

Students will integrate knowledge of the electromagnetic spectrum. into space physics to explain red-shift.

exothermic and endothermic reactions including representing them graphically, explaining them in terms of particle collisions and giving examples of each. Higher tier students will be able to calculate the energy changes of reactions as bonds are broken and formed.

Communicable Disease (biology separate science pathway only)

Students will learn about viral, fungal, bacterial and a protist disease considering transfer, symptoms and treatments across a range of human and plant examples with greater emphasis on identification and methods of protect in plants. Students will also learn about culturing microorganisms and learn how to safely do so in a laboratory.

how chemical and fuel cells work.

understanding of this by looking at the levels of feeding relationships in more detail. More advanced vocabulary is introduced and pupils explore how abiotic factors affect ecosystems, such as water and carbon in the cycling of materials.

they develop their

Decay RP (<u>biology</u> <u>separate science</u> <u>pathway only</u>)

Students will apply their understanding of decay by investigating the rate of decay of milk in different environments.

	understand how static electricity is formed.					
Year 11	Adaptations,	Force and Motion	Reproduction	Electromagnetic Waves	Students begin tailored	GCSE's.
(Combined	Interdependence and	Students will apply their	Students will apply their	Students will develop their	revision plans, produced	
•	Competition	knowledge of forces	knowledge of the cell	understanding from KS3	and delivered by their	
Science:	Students look at the	to represent motion.	cycle and mitosis to a	light to look at the	class teachers, for their	
Trilogy)	factors that can affect	Students will draw and	new type of cell division:	electromagnetic spectrum,	final GCSE exams.	
	the distribution of	interpret graphs to	meiosis. They will	the properties and uses of	jiidi Gest exams.	
	organisms and	calculate displacement,	Students will explore	its component		
	adaptations to help	velocity and time using	cellular reproduction in	parts. Students will be		
	them survive in an	related and sometimes	the formation of	able to describe the uses		
	ecosystem. They will	multi-step equations.	gametes and understand	of the EM spectrum in real		
	describe methods to		why the two processes	life and the dangers of		
	measure the	Crude Oil and Fuels	differ. Students will be	certain parts of it.		
	distribution of	Students will be	expected to use	Students will apply their		
	organisms and link	introduced to the	diagrams to support	maths skills through use of		
	their findings to	composition of crude oils,	their explanations of	standard form to		
	adaptations of plants	methods of separating	meiosis and mitosis.	represent very large and		
	and animals.	into fractions and	Students will revisit	very small numbers.		
		properties of	fundamental key words			
	Biodiversity and	hydrocarbons. Students	from their KS3 genetics	Electromagnetism		
	Ecosystems	will learn about the	learning and link these	Students will revisit their		
	Students will build on	different structures and	to cellular reproduction.	KS3 knowledge of		
	prior learning of	applications of alkanes		magnets and their KS4		
	ecosystems and	and alkenes including	Variation and Evolution	knowledge of forces to		
	feeding relationships.	methods of cracking to	Students will develop	extend their		
	They will consider ways	produce alkenes.	their understanding of	understanding. Students		
	that humans have an		variation from KS3 and	will explain how a		
	impact on the	Earth's Atmosphere	make scientific links	magnetic field is produced		
	distribution of	Students will learn how	between variation and	when a current passes		
	organisms and	the Earth's atmosphere	evolution. Students will	through a wire. Some		
	ecosystems, which	was formed, what it is	explore Darwin's theory	students will learn about		
	forms cross-curricular	made of, and how it has	of evolution by natural	the motor effect and how		

links with chemistry. physics and geography.

Rates and Equilibrium Students be introduced to the collision theory and will use this to explain rate of reaction. Students will investigate the factors that affect rate of reaction through various experimental techniques, and will apply their graph drawing skills to represent data collected. Students will also explore the term "reversible reaction"

Forces in Balance

and, in some cases,

factors affecting

equilibrium.

Students will further develop their understanding of forces as scalars and vectors, looking at how forces affect a range of objects including more complex calculations of

changed since the formation of the Earth. Students will broaden their understanding of carbon dioxide and methane as areenhouse gases, including human impacts, global climate change and methods of reducing carbon footprints. They will make cross-curricular links between physics and biology, as well as geography.

Human Nervous System

Students will gain an understanding of why homeostasis and reflex arcs are so important. Students will recall the structures involved in a reflex arc and how nerves communicate at a svnapse. Students will further develop practical skills while investigating reaction time.

Hormonal Coordination Students will understand

what hormones are and

selection and explain the evidence to support this theory. Students will also learn about selective breeding techniques and use their knowledge to evaluate the use of GM crops in industry.

Genetics and Evolution

Having developed a deeper understanding of aenetic inheritance and evolution from previous topics, students will explore further evidence to support the theory of make links between evolution and the uprise of antibiotic resistant bacteria, as well as relating this to real-life complications. Students will learn how organisms are classified and be able to explain the importance of classification.

Chemical Analysis

Students will develop their understanding of pure substances,

to use Fleming's left hand rule in relation to this.

Earth's Resources

Students will develop their foundational knowledge and understanding of the limited resources available on Earth from KS3. They will be introduced to life cycle assessments to determine the environmental impact of products as well as methods of reducing waste. Some students will evolution. Students will also evaluate the methods of extracting metals.

work done and applying Newton's Laws to explain what we observe when forces are at work. Students will apply their mathematical skills to calculate some cases, resolve vectors.

Motion

Students will integrate Newton's Laws of motion into their existing knowledge to explain why objects act in specific and predictable ways when forces are exerted on them. Students will also will learn real world applications of force and motion by determining braking and stopping distances of vehicles.

how bodily responses are controlled by feedback mechanisms. Specifically deepening their understanding of changes at puberty and how hormones control the menstrual cycle. They explore the role of resultant forces and, in the pancreas in controlling blood glucose, applying this to understand causes/ treatments of diabetes. Students may also learn how glucagon and insulin interact to control blood glucose levels.

mixtures and chromatography through a mixture of theory and a chromatography invest igation to separate and differentiate between coloured substances. They will be able to describe how to test for hydrogen, oxygen, carbon dioxide and chlorine.

Waves

Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed of waves in air, water and a solid. Students will investigate wave measurements using a ripple tank and be able

			to write a method for			
			this.			
Year 11	Hormonal	Reproduction	Variation and Evolution	Earth's Resources	Revision/GCSE's.	GCSE's.
(Separate	Coordination	Students will apply their	Students will develop	Students will develop their		
• •	Students will be able to	knowledge of the cell cycle	their understanding of	understanding of the		
Sciences)	link hormones and	and mitosis to a new type	variation from KS3 and	limited resources available		
4-25 cohort	homeostasis. Students	of cell division: meiosis.	make scientific links	on Earth and the role		
only	specifically deepen	They will Students will	between variation and	chemistry plays in		
<u> </u>	their understanding of	explore cellular	evolution. Students will	improving agricultural and		
	changes at puberty and	reproduction in the	explore Darwin's theory	industrial contributions to		
	explain	formation of gametes and	of evolution by natural	the resources we		
	how hormones control	understand why the two	selection and explain the	consume. They will be		
	the menstrual cycle.	processes differ. Students	evidence to support this	introduced to life cycle		
	Students will learn the	will be expected to use	theory. Students will also	assessments to determine		
	role of the pancreas in	diagrams to support their	learn about selective	the environmental impact		
	controlling blood	explanations of meiosis	breeding techniques and	of products as well as		
	glucose concentrations,	and mitosis. Students will	use their knowledge to	methods of reducing		
	applying this to	revisit fundamental key	evaluate the use of GM	waste. Some students will		
	understand causes/	words from their KS3	crops in industry.	also learn about		
	treatments of	genetics learning and link		alternative methods of		
	diabetes.	these to cellular	Genetics and Evolution	extracting metals and be		
	Students explore plant	reproduction.	Having developed a	able to evaluate these		
	responses to light and		deeper understanding of	methods.		
	gravity and how these	Organic Reactions	genetic inheritance and			
		Students will study alkenes	evolution from previous	Using Our Resources		
	chemicals called	to a greater depth than in	topics, students will	Students will learn		
	auxins. Students will be	the crude oil topic. They	explore further evidence	about methods of		
	able to describe and	will learn to identify	to support the theory of	improving or synthesising		
	explain practical	alkenes, describe their	evolution. Students will	materials to better suit		
	techniques to	reactions, and describe	make links between	their uses and improve		
	investigate the effects	the reactions of alcohols	evolution and the uprise	their longevity including		
	of auxins.	and carboxylic acids.	of antibiotic resistant	preventing		
			bacteria, as well as	corrosion, metal alloys,		

Homeostasis in Action

Students will link their *learning of hormones* to real life. Students will explain how hormones interact to control blood *alucose levels* and water balance in in depth knowledge of the structure of the kidney, which is essential learning for those continuing on to A level biology.

Students be introduced to the collision theory and will use this to explain rate of reaction. Students will investigate the factors that affect rate of reaction through various experimental techniques, and will apply their graph drawing skills to represent data collected. Students will also explore the term "reversible reaction"

Waves

Students will explore the properties of longitudinal and transverse waves. They will apply equations to calculate the period, speed, frequency, and length of a wave as well as how to measure the speed the body, including an of waves in air, water and a solid. Students will investigate wave measurements using a ripple tank and be able to write a method for this. Students will also *investigate the reflection* Rates and Equilibrium of waves, looking at sound waves in greater depth and using waves for detection and exploration.

relating this to real-life complications. Students to explain the importance of classification.

Biodiversity and Ecosystems

Students will build on prior learning of ecosystems and feeding relationships. Looking at the factors that can affect the distribution of organisms and adaptations to help them survive in an ecosystem. Students are required to describe two separate methods of practical techniques. They will describe methods to measure the distribution of organisms before learning how materials like carbon and water are recycled.

Polymers

Students will be introduced to addition polymerisation, synthetic

ceramics, polymers and composite materials. They will learn how organisms will use their knowledge of are classified and be able equilibria to develop an understanding of ammonia and fertiliser production. In this topic, students are expected to draw on knowledge from their prior chemistry learning to make educated links and explanations.

Light

Students will be able to explain visible light in more detail and understand how we see colour. This is essential learning before students are introduced to the concept of black body radiation.

Space (physics separate science pathway only)

Students will extend their knowledge of space, starting with understanding our place in the universe, before looking at the lifecycle of a star and the effect of

and, in some cases, factors affecting equilibrium.

Crude Oil and Fuels

Students will be introduced to the composition of crude oils, methods of separating into fractions and properties of hvdrocarbons. Students will learn about the different structures and applications of alkanes and alkenes including methods of cracking to produce alkenes.

Force and Motion

Students will apply their knowledge of forces to represent motion. Students will draw and interpret graphs to calculate displacement, velocity and time using related and sometimes multistep equations. Studen ts will also will learn real world applications

polymers such as polythene and extend their understanding of DNA as a natural will go further to study condensation polvmerisation as well as explaining amino acids as natural polymers. **Chemical Analysis**

Students will develop their understanding of pure substances, mixtures and chromatography including an investigation to separate and differentiate between coloured substances. They will be able to describe how to test for hydrogen, oxygen, carbon dioxide and chlorine. In addition, students will learn to identify ions present using a range of chemical methods including flame tests or through instrumental methods using

spectroscopy.

gravity on the orbits of planets and satellites. Students will integrate knowledge of the polymer. Some students electromagnetic spectrum.

> Students begin tailored revision plans, produced and delivered by their class teachers, for their final GCSE exams.

of force and motion by
determining braking
and stopping distances
of vehicles.

Force and Pressure

Students will study pressure in fluids and atmospheric pressure to understand that both liquids and gases are fluids and pressure increases with depth. Students will learn to calculate pressure at the surface of a fluid and the pressure due to a column of liquid.

Electromagnetic Waves

Students will develop their understanding from units about light to understand the electromaanetic spectrum, the properties and uses of its component parts. Some students will learn how different wavelengths refract, how to draw wave front diagrams and how radio waves and alternating currents are linked. Students will further their understanding of light refraction to explain how lenses work and the type of image they produce.

Electromagnetism

Students will refresh and extend their knowledge of magnets and electromagnetism to understand how a magnetic field is produced when a current passes through a wire. Students will learn about the motor effect, Fleming's left-hand rule

and loudspeakers and will be able to explain	
each. Students will also	
develop an understanding of the	
generator effect and its	
uses including	
microphones. They will	
integrate this knowledge	
into their previous study	
of the national grid to understand how	
transformers work.	

			KS5 SCIENCE			
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Year 12	Biological molecules	Biological molecules	Biological Molecules	Genes and Variation	Genes and Variation	Responses in plants and
BIOLOGY	Students will deepen their	The biochemistry of	The interplay between	This topic enables	Going further, pupils	animals
DIOLOGI	understanding of the	proteins, DNA and ATP is	DNA and proteins in	learners to interleave	explore how we	Students explore
	macromolecules of life, their	essential fundamental	crucial in cell function,	and apply their	measure diversity	responses to stimuli in
	biochemistry and actions	knowledge to unlock	understanding protein	understanding of DNA in	through ecological	plants and animals. They
	focusing on Water,	understanding of a host	synthesis is key to this.	contexts of mutation,	sampling and	are introduced to taxis
	carbohydrates and lipids.	of biological processes,		reproduction and meiosis	quantitative measure of	and kinesis in animals
		including enzyme action	Cells and Exchange	which leads to genetic	variation. This is	and the role of auxins
	Cells	and protein synthesis.	Students continue to	diversity, adaptation and	then linked to the	and other hormones in
	Students delve deeper into		develop their	selection. Pupils further	interdependence of	plants. They revisit the
	cell ultrastructure and	Cells	understanding of cellular	explore how this has	populations and	reflex arc from GCSE at
	methods of studying cells.	Students link their	exchange through	helped models develop	ecosystems and how	greater depth, drawing
	They explore prokaryotes and	learning of DNA to	practical investigations	over time in how we	species are linked to	on A-level understanding
	viruses as well as cell	describe mitosis and the	and statistical analysis.	classify organisms.	lead to succession,	of cells, and movement
	specialisation.	cell cycle in detail,			natural selection and	of ions to explain how
		comparing this to	Immunity	Exchange	speciation.	electrical impulses are
		prokaryotic division. They	Pupils gain a greater	Students focus on		formed in receptors in
		apply practical techniques	depth of understanding	physiology and organ	Exchange	response to light, touch
		to investigate mitosis	of the immune response	systems in plant and	Students focus on	and other
		using microscopy.	in both plants and	animal gas exchange.	physiology and organ	stimuli. Further
			humans, applying		systems in digestion in	application to explain
		Cellular Exchange	their knowledge of cell		humans, as well as	the electrical control of
		Students build on	specialisation, proteins		mass transport in	the heartbeat and the
		knowledge from GCSE but	and cell membranes to		animals and plants	role of synapses.
		go further to explain	new contexts within		through exploration of	
		osmosis, diffusion and	immunity. They explore		blood and circulation as	Populations and
		active transport with	how our understanding		well as transpiration	ecosystems
		reference to the	has led to practical and		and translocation.	Ecosystems are dynamic
		specific structures of the	medical applications			with competition,
		cell membrane using	through viral research			predation and
		the fluid mosaic model	and HIV as well as			succession being key

		and	monoclonal antibody			processes in
		specialist terminology to	testing and			interdependence.
		explain each process in a	treatments. Pupils			Students apply their
		variety of contexts.	conduct their own			understanding to explain
			investigations into			variation in populations
			microbiology using			and how to investigate
			aseptic techniques.			this through fieldwork
						and conservation.
Year 13	Nerves and Muscles	Homeostasis	Inheritance	Energy and Ecosystems	Revision	
BIOLOGY	Students go further to	Students reflect and build	Building on genetics from	Pupils recap their		
DIOLOGI	examine and explain how	on understanding of	GCSE, students go	understanding of		
	action potentials are created	negative feedback and	further to understand	ecosystems and transfer		
	and propagated along an	the role of endocrine	monohybrid and dihybrid	of energy and biomass.		
	axon. They will explain	glands in osmo-	inheritance as well as	They explore nutrient		
	the processes at a	and gluco-regulation.	codominance, linkage	cycles more closely and		
	synapse and how nervous	They explore	and the effects of	the environmental		
	action is coordinated. They	in more detail	epistasis. Students also	impacts of different		
	will also learn the gross	the structures of the	look more closely at the	agriculture practices on		
	structure of muscles and how	pancreas, liver and	Chi squared test.	ecosystems and		
	stimulation at	kidneys to explain their		biodiversity.		
	a neuromuscular junction and	functions and	Control of gene			
	movement of ions and the	consequences	expression	Control of gene		
	proteins actin and	and treatments if these	Building on	expression		
	myosin result in muscle	organs fail (e.g. diabetes	understanding of stem	Students look in detail at		
	contraction via a power	or dialysis).	cells and genetic	the processes involved		
	stroke.		engineering, students	with amplifying and		
		Respiration	look more closely at	manipulating DNA in in		
	Photosynthesis	Students delve deeper	regulation of	vivo cloning and in vitro		
	Students delve deeper into	into the sub-structure of	transcription and	cloning (PCR), as well as		
	the structure of chloroplasts	mitochondria and the	translation,	genetic fingerprinting		
	and the biochemistry of	biochemistry of	exploring epigenetics and	and processes such as		
	photosynthesis exploring (1)	respiration as a four	cancer.	gel electrophoresis		
	the light-dependent reactions	stage process, consisting		and its application to		
	and (2) the light-independent	of glycolysis, pyruvate		genome sequencing.		

NORTHERN LEADER	NORTHERN LEADERS TRUST LEARNING JOURNEY – SCIENCE									
reactions (also called the	oxidation, the Kreb's cycle									
Calvin cycle). Students further	and the electron									
develop their understanding	transport chain using									
of experimental techniques	oxidation and reduction									
through investigation of	to explain chemical									
photosynthetic pigments and	events that result in the									
of the photosynthesis	production of ATP in									

aerobic and anaerobic

respiration.

reactions.

	Physical – Atomic	Physical – Atomic	Physical – Amount of	Physical – Energetics	Physical – Kinetics	Physical – Equilibria
V 40	Structure	Structure	Substance	(Inc. RP2)	(Inc. RP3)	A study of equilibria
Year 12	Students learn that the	(Inc. RP1)	Students will build on	The enthalpy change	The study of kinetics	indicates how far
CHEMISTRY	Partical proparties of R	S TRUST L	their muledge com	n a chemical reaction	Cenables chamists to	reactions will go. Le
VORTI	elements depend on their	Physical – Amount of	K\$4 quantitative	can be measured	determine how a	Chatelier's principle
	atomic structure and on	Substance	chemistry learning	accurately. It is	change in conditions	can be used to predic
	the arrangement of	Students will build on	about the mole as a	important to know	affects the speed of a	the effects of change
	electrons around the	their knowledge from	measure of the amount	this value for chemical	chemical reaction.	in temperature,
	nucleus in orbitals.	KS4 quantitative	of a substance. An	reactions that are	Whilst the reactivity	pressure and
	Students learn how	chemistry learning	amount in moles can	used as a source of	of chemicals is a	concentration on th
	Chemists can measure the	about the mole as a	be measured out by	heat energy in	significant factor in	yield of a reversible
	mass of atoms and	measure of the	mass in grams, by	applications such as	how fast chemical	reaction. This has
	molecules to a high degree	amount of a	volume in dm³ of a	domestic boilers and	reactions proceed,	important
	of accuracy in a mass	substance. An	solution of known	internal combustion	there are variables	consequences for
	spectrometer.	amount in moles can	concentration and by	engines.	that can be	many industrial
		be measured out by	volume in dm³ of a gas.		manipulated in order	processes. The furthe
		mass in grams, by			to speed them up or	study of the
		volume in dm³ of a			slow them down	equilibrium constan
		solution of known				Kc, considers how th
		concentration and by				mathematical
		volume in dm³ of a				expression for the
		gas.				equilibrium constan
						enables us to calcula
						how an equilibrium
						yield will be influence
						by the concentration
						of reactants and
						products.
	Organic – Intro to organic	Organic – Alkanes	Organic – Haloalkanes	Organic – Alkenes	Organic – Alcohols	Organic – Organic
	Organic chemistry is the	Alkanes are the main	Halogenoalkanes are	In alkenes, the high	(Inc. RP5)	Analysis
	study of the millions of	constituent of crude	much more reactive	electron density of the	Alcohols have many	(Inc. RP6)
	covalent compounds of the	oil, which is an	than alkanes. They	carbon–carbon double	scientific, medicinal	Our understanding of
	element carbon.	important raw	have many uses,	bond leads to attack	and industrial uses.	organic molecules,
	These structurally diverse	material for the	including as	on these molecules by	Ethanol is one such	their structure and to
	compounds vary from	chemical industry.	refrigerants, as	electrophiles. This	alcohol and it is	way they react, has
	naturally occurring	Alkanes are also used	solvents and in	section also covers the	produced using	been enhanced by
	petroleum fuels to DNA	as fuels and the	pharmaceuticals. The	mechanism of	different methods,	organic analysis. Th
	and the molecules in living	environmental	use of some	addition to the double	which are considered	section considers
	systems. Organic	consequences of this	halogenoalkanes has	bond and introduces	in this section.	some of the analytic
	compounds also	use are considered in	been restricted due to	addition polymers,	Ethanol can be used	techniques used by
	demonstrate human	this section.	the effect of	which are	as a biofuel.	chemists, including

ingenuity in the vast range		chlorofluorocarbons	commercially		test-tube reactions
of synthetic materials		(CFCs) on the	important and have		and spectroscopic
created by chemists. Many		atmosphere.	many uses in modern		techniques.
of these compounds are			society.		
used as drugs, medicines					
and plastics.					
Organic compounds are					
named using the					
International Union of					
Pure and Applied					
Chemistry (IUPAC) system					
and the structure or					
formula of molecules can					
be represented in various					
different ways. Organic					
mechanisms are studied,					
which enable reactions to					
be explained.					
In the search for					
sustainable chemistry, for					
safer agrochemicals and					
for new materials to match					
the desire for new					
technology, Chemistry					
plays the dominant role.					
Physical – Bonding	Physical – Redox	Inorganic – Periodicity	Inorganic – Group 7	Inorganic –	
The physical and chemical	Redox reactions	Group 2	(Inc. RP4)	Properties of period	
properties of compounds	involve a transfer of	The elements in Group	The halogens in Group	3 Oxides (A2	
depend on the ways in	electrons from the	2 are called the alkaline	7 are very reactive	Content)	
which the compounds are	reducing agent to the	earth metals. The	non-metals. Trends in	The reactions of the	
held together by chemical	oxidising agent. The	trends in the solubilities	their physical	Period 3 elements	
bonds and by	change in the	of the hydroxides and	properties are	with oxygen are	
intermolecular forces.	oxidation state of an	the sulfates of these	examined and	considered. The pH of	
Theories of bonding	element in a	elements are linked to	explained. Fluorine is	the solutions formed	

		I	I		1	
	explain how atoms or ions	compound or ion is	their use. Barium	too dangerous to be	when the oxides	
	are held together in these	used to identify the	sulfate, magnesium	used in a school	react with water	
	structures. Materials	element that has	hydroxide and	laboratory but the	illustrates further	
	scientists use knowledge of	been oxidised or	magnesium sulfate	reactions of chlorine	trends in properties	
	structure and bonding to	reduced in a given	have applications in	are studied.	across this period.	
	engineer new materials	reaction. Separate	medicines whilst	Challenges in studying	Explanations of these	
	with desirable properties.	half-equations are	calcium hydroxide is	the properties of	reactions offer	
	These new materials may	written for the	used in agriculture to	elements in this group	opportunities to	
	offer new applications in a	oxidation or	change soil pH, which is	include explaining the	develop an in-depth	
	range of different modern	reduction processes.	essential for good crop	trends in ability of the	understanding of	
	technologies	These half-equations	production and	halogens to behave as	how and why these	
	technologies	can then be	maintaining the food	oxidising agents and	reactions occur.	
					reactions occur.	
		combined to give an	supply.	the halide ions to		
		overall equation for		behave as reducing		
		any redox reaction.		agents		
Year 13	Physical –	Physical – Rates	Physical – Electrode	Physical – Acids and	Revision	Revision
CHEM	Thermodynamics	In rate equations, the	Potentials	Bases		
	(Inc. RP7)	mathematical	(Inc. RP 8)	(Inc. RP 9)		
	The further study of	relationship between rate of reaction and	Redox reactions take place	Acids and bases are		
	thermodynamics builds on the	concentration gives	in electrochemical cells	important in domestic,		
	Energetics section and is					
	_	_	where electrons are	environmental and		
	important in understanding	information about the	transferred from the	industrial contexts.		
	important in understanding the stability of compounds and	information about the mechanism of a reaction	transferred from the reducing agent to the	industrial contexts. Acidity in aqueous		
	important in understanding the stability of compounds and why chemical reactions occur.	information about the mechanism of a reaction that may occur in several	transferred from the reducing agent to the oxidising agent indirectly	industrial contexts. Acidity in aqueous solutions is caused by		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with	information about the mechanism of a reaction that may occur in several steps	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the	information about the mechanism of a reaction that may occur in several steps Physical —	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical – Equilibrium	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the	information about the mechanism of a reaction that may occur in several steps Physical – Equilibrium The further study of	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work.	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions,		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical — Equilibrium The further study of equilibria considers how	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work. Electrochemical cells have	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical — Equilibrium The further study of equilibria considers how the mathematical	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work. Electrochemical cells have very important commercial	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical — Equilibrium The further study of equilibria considers how the mathematical expression for the	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work. Electrochemical cells have very important commercial applications as a portable	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical — Equilibrium The further study of equilibria considers how the mathematical expression for the equilibrium constant \mathcal{K}_p	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work. Electrochemical cells have very important commercial applications as a portable supply of electricity to	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical — Equilibrium The further study of equilibria considers how the mathematical expression for the equilibrium constant \mathcal{K}_p enables us to calculate	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work. Electrochemical cells have very important commercial applications as a portable supply of electricity to power electronic devices	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important industrial and biological		
	important in understanding the stability of compounds and why chemical reactions occur. Enthalpy change is linked with entropy change enabling the free-energy change to be	information about the mechanism of a reaction that may occur in several steps Physical — Equilibrium The further study of equilibria considers how the mathematical expression for the equilibrium constant \mathcal{K}_p	transferred from the reducing agent to the oxidising agent indirectly via an external circuit. A potential difference is created that can drive an electric current to do work. Electrochemical cells have very important commercial applications as a portable supply of electricity to	industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important		

		I			T
Organic -	partial pressures of reactants and products. This has important consequences for many industrial processes Organic —	larger scale, they can provide energy to power a vehicle. Physical – Acids and Bases (Inc. RP 9) Acids and bases are important in domestic, environmental and industrial contexts. Acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, has been devised to measure acidity. Buffer solutions, which can be made from partially neutralised weak acids, resist changes in pH and find many important industrial and biological applications. Organic –	Transition metals The 3d block contains 10 elements, all of which are metals. Unlike the metals in Groups 1 and 2, the transition metals Ti to Cu form coloured compounds and compounds where the transition metal exists in different oxidation states. Some of these metals are familiar as catalysts. The properties of these elements are studied in this section with opportunities for a wide range of practical investigations Reactions of ions (Inc. RP 11) The reactions of transition metal ions in aqueous solution provide a practical opportunity for students to show and to understand how transition metal ions can be identified by test-tube reactions in the laboratory. Organic —	Revision	Revision
			students to show and to understand how transition metal ions can be identified by test-tube reactions in the		
Organic - Amino acids, proteins and DNA	Organic – Aldehydes and ketones	Organic – Amines Amines are compounds	Organic – Synthesis The formation of new	Revision	Revision
Amino acids, proteins and DNA are the molecules of life. In this section, the structure and bonding in	Aldehydes, ketones, carboxylic acids and their derivatives all contain the carbonyl	based on ammonia where hydrogen atoms have been replaced by alkyl or aryl groups.	organic compounds by multi-step syntheses using reactions included in the		

these molecules and the way they interact is studied. Drug action is also considered.

Optical Isomerism

Compounds that contain an asymmetric carbon atom form stereoisomers that differ in their effect on plane polarised light. This type of isomerism is called optical isomerism. group which is attacked by nucleophiles. This section includes the addition reactions of aldehydes and ketones.

Carboxylic acids (Inc. RP 10)

Carboxylic acids are weak acids but strong enough to liberate carbon dioxide from carbonates. Esters occur naturally in vegetable oils and animal fats. Important products obtained from esters include biodiesel, soap and glycerol Aromatic chemistry Aromatic chemistry

takes benzene as an

example of this type

of molecule and looks

at the structure of

the benzene ring and its substitution

reactions

This section includes their reactions as nucleophiles.

Polymers

The study of polymers is extended to include condensation polymers. The ways in which condensation polymers are formed are studied, together with their properties and typical uses. Problems associated with the reuse or disposal of both addition and condensation polymers are considered.

specification is covered in this section.

NMR

Chemists use a variety of techniques to deduce the structure of compounds. In this section, nuclear magnetic resonance spectroscopy is added to mass spectrometry and infrared spectroscopy as an analytical technique. The emphasis is on the use of analytical data to solve problems rather than on spectroscopic theory.

Chromatography (Inc. RP 12)

Chromatography
provides an important
method of separating
and identifying
components in a
mixture. Different
types of
chromatography are
used depending on the
composition of
mixture to be
separated

Year 12 PHYSICS

Particles and Radiation

This section introduces students both to the fundamental properties of matter, and to electromagnetic radiation and quantum phenomena. Through a study of these topics, students become aware of the way ideas develop and evolve in physics. They will appreciate the importance of international collaboration in the development of new experiments and theories in this area of fundamental research.

Photoelectric effect

Students should know that electron diffraction suggests that particles possess wave properties, and the photoelectric effect suggests that electromagnetic waves have a particulate nature. The ultraviolet catastrophe and black-body radiation. Planck's interpretation in terms of quanta. The failure of classical wave theory to explain observations on photoelectricity. Einstein's explanation of photoelectricity and its significance in terms of the nature of electromagnetic radiation

Electricity

below a critical

This section builds on Students learn about and develops earlier potential dividers and study of these they learn to construct and include potential phenomena from GCSE. It provides dividers in electric opportunities for the circuits. development of Students will be practical skills at an expected to early stage in the understand and course and lays the perform calculations groundwork for later for circuits in which the study of the many internal resistance of electrical applications the supply is not that are important to negligible Applications of society. Description of the superconductors to qualitative effect of include the production temperature on the of strong magnetic resistance of metal fields and the conductors and reduction of energy thermistors. loss in transmission of Applications of electric power thermistors to include Terminal pd; emf Students will be temperature sensors and resistanceexpected to understand and temperature graphs. Superconductivity as a perform calculations property of certain for circuits in which the materials which have internal resistance of the supply is not zero resistivity at and

Nuclear Physics RP12

Electricity RP5. RP6

negligible.

This section builds on the work of Particles and radiation to link the properties of the nucleus to the production of nuclear power through the characteristics of the nucleus, the properties of unstable nuclei, and the link between energy and mass. Students should become aware of the physics that underpins nuclear energy production and also of the impact that it can have on society. Investigate the decay equation using a variety of approaches (including the use of experimental data, dice simulations etc)

Nuclear Physics

Estimate of radius from closest approach of alpha particles and determination of radius from electron diffraction. Knowledge of typical values for nuclear radius. Students will need to be familiar with the Coulomb equation for the closest approach estimate. Appreciation that E = mc 2 applies to all energy changes, Simple calculations involving mass difference and binding energy. Atomic mass unit, u. Conversion of units; 1 u = 931.5 MeV. Fission and fusion processes. Simple calculations from nuclear masses of energy released in fission and fusion reactions. Graph of average binding energy per nucleon

			temperature which		and a variety of	against nucleor
			depends on the		analytical methods.	number.
			material.			
	Waves RP1	Waves RP2	Materials RP4	Mechanics RP3		
	GCSE studies of wave	Investigation of two-	This unit is an	Vectors and their		
	phenomena are extended	source interference	extension of GCSE,	treatment are		
	through a development of	with sound, light and	students learn about	introduced followed by		
	knowledge of the	microwave radiation.	Hooke's law, tensile	development of the		
	characteristics, properties,	Students will be	strain and tensile	student's knowledge		
	and applications of	expected to describe	stress.	and understanding of		
	travelling waves and	and explain	Description of plastic	forces, energy and		
	stationary waves. Topics	interference	behaviour, fracture and	momentum. The		
	treated include refraction,	produced with sound	brittle behaviour linked	section continues with		
	diffraction, superposition	and electromagnetic	to force–extension	a study of materials		
	and interference.	waves. Appreciation		considered in terms of		
		of how knowledge	graphs. Quantitative	their bulk properties		
		and understanding of	and qualitative	and tensile strength.		
		nature of	application of energy	As with earlier topics,		
		electromagnetic	conservation to	this section and also		
		radiation has	examples involving	the following section		
		changed over time.	elastic strain energy	Electricity would		
			and energy to deform.	provide a good starting		
			Spring energy	point for students who		
			transformed to kinetic	prefer to begin by		
			and gravitational	consolidating work.		
			potential energy.			
			Interpretation of			
			simple stress–strain			
			curves			
	Fields – Gravitational	Fields – Capacitor	Fields – Magnetic	Measurement and		
	fields, Electric fields RP10,	charge and discharge	fields	errors		
	Rp11	RP9		Students learn about		
Year 13	·			random and systematic		

DUVCICC	Students learn about	Students learn about	Students learn about	orrors Procision		
PHYSICS			force on a current-	errors. Precision,		
	gravity as a universal	the definition of		repeatability,		
	attractive force acting	capacitance: C = Q/	carrying wire in a magnetic field: F = BII	reproducibility,		
	between all matter.	V.	when field is	resolution and		
	Magnitude of force	Students learn about	perpendicular to	accuracy. Uncertainty:		
	between point masses: F =	the action of a simple	current. Fleming's left	Absolute, fractional		
	Gm1m2 r 2 where G is the	polar molecule that	hand rule. Magnetic	and percentage		
	gravitational constant.	rotates in the	flux density B and	uncertainties		
	Students learn to estimate	presence of an	definition of the tesla.	represent uncertainty		
	various parameters of	electric field.	Investigate how the	in the final answer for		
	planetary orbits, eg kinetic	Determine the	force on a wire varies	a quantity.		
	energy of a planet in orbit.	relative permittivity	with flux density,	Combination of		
		of a dielectric using a	current and length of	absolute and		
		parallel-plate	wire using a top pan	percentage		
		capacitor. Investigate	balance	uncertainties.		
		the relationship		Represent uncertainty		
		between C and the		in a data point on a		
		dimensions of a		graph using error bars.		
		parallel-plate		Determine the		
		capacitor.		uncertainties in the		
		capacitor:		gradient and intercept		
				of a straight-line graph.		
				Individual points on		
				the graph may or may		
				not have associated		
				error bars.		
	Further Mechanics RP8	Further Mechanics	Thermal Physics	Astrophysics	Revision	
	The earlier study of	Students should	Students should be	Fundamental physical		
	mechanics is further	recognise the use of	able to investigate the	principles are applied		
	advanced through a	the small-angle	factors that affect the	to the study and		
	consideration of circular	approximation in the	change in temperature	interpretation of the		
	motion and simple	derivation of the	of a substance using an	Universe. Students		
<u> </u>	1	<u> </u>	ı			1